Vol. 53
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-07-08
Time-Domain Distributed Parameters Transmission Line Model for Transient Analysis
By
Progress In Electromagnetics Research B, Vol. 53, 25-46, 2013
Abstract
This article describes a time-domain transmission line model based on distributed parameters for transient analysis. This model is based directly on the differential equations for the basic transmission line without any previous simplification. The solution presented here for these differential equations results in a more detailed time-domain model than others models currently in use, and with certain structural similarities with the distributed parameter frequency-domain model for long transmission lines. The deduction of a general time-domain transmission line model for fundamental frequencies parameters and single-phase line are presented in this article, but the model can also be extended to cases with multiconductor and frequency-depended parameters. In order to validate the model, a comparative test is presented to facilitate the analysis about the main similarities and differences between this and other models.
Citation
Luis de Andrade, Helder Leite, and Maria Teresa Ponce de Leao, "Time-Domain Distributed Parameters Transmission Line Model for Transient Analysis," Progress In Electromagnetics Research B, Vol. 53, 25-46, 2013.
doi:10.2528/PIERB13041804
References

1. Dommel, H. W., "Digital computer solution of electromagnetic transients in single-and multiphase networks," IEEE Transactions on Power Apparatus and Systems, Vol. 88, 388-399, 1969.
doi:10.1109/TPAS.1969.292459

2. Bergeron, L., Water Hammer in Hydraulics and Wave Surges in Electricity, Wiley, New York, 1961.

3. Marti, J. R., "Accurate modelling of frequency-dependent transmission lines in electromagnetic transient simulations," IEEE Transactions on Power Apparatus and Systems, Vol. 101, 147-157, 1982.
doi:10.1109/TPAS.1982.317332

4. Morched, A., B. Gustavsen, and M. Tartibi, "A universal model for accurate calculation of electromagnetic transients on overhead lines and underground cables," IEEE Transactions Power Delivery, Vol. 14, No. 3, 1032-1038, 1999.
doi:10.1109/61.772350

5. Chipman, R. A., Theory and Problems of Transmission Lines, McGraw-Hill, 1968.

6. Kundur, P., Power System Stability and Control, McGraw-Hill, New York, 1993.

7. Heaton, A. G. and A. M. H. Issa, "Transient response of crossbonded cable systems," Proceedings of the Institution of Electrical Engineers, Vol. 117, 578-586, 1970.
doi:10.1049/piee.1970.0114

8. Branin, F. H., "Transient analysis of lossless transmission lines," Proceedings of the IEEE, Vol. 55, 2012-2013, 1967.
doi:10.1109/PROC.1967.6033

9. Marti, J. R., L. Marti, and F. W. Dommel, "Transmission line models for steady-state and transients analysis," Proc. Joint International Power Conf. Athens Power Tech., 744-750, 1993.

10. Dommel, H. W., EMTP Theory Book, 2nd Ed., Microtran Power System Analysis Corporation, Vancouver, Canada, 1992.

11. Faria, J. B., "A new generalized modal analysis theory for nonuniform multiconductor transmission lines," IEEE Transactions on Power Systems, Vol. 19, No. 2, 926-933, 2004.
doi:10.1109/TPWRS.2004.826726

12. Trakadas, P. T. and C. N. Capsalis, "Validation of a modified FDTD method on non-uniform transmission lines," Progress In Electromagnetic Research, Vol. 31, 311-329, 2001.
doi:10.2528/PIER00071705

13. Lucic, R., I. Juric-Grgic, and M. Kurtovic, "FEM analysis of electromagnetic transients in linear networks," European Transactions on Electrical Power, Vol. 19, No. 6, 890-897, 2009.
doi:10.1002/etep.268

14. Tang, M. and J. F. Mao, "Transient analysis of lossy nonuniform transmission lines using a time-step integration method," Progress In Electromagnetics Research, Vol. 69, 257-266, 2007.
doi:10.2528/PIER06123001

15. De Andrade, L. and E. Sorrentino, "Inclusion of the zero-sequence mutual impedance in a distributed parameter model of transmission lines ," 9th IEEE Int. Conf. on Environment and Electrical Engineering, 242-245, 2010.

16. Van der Sluis, L., Transients in Power Systems, John Wiley & Sons, Ltd., 2001.

17. d'Alembert, J., "Recherches sur la courbe que forme une corde tenduë mise en vibration," Histoire de L'académie Royale des Sciences et Belles Lettres de Berlin, Vol. 3, 214-249, 1747.

18. Paul, C. R., "A brief history of work in transmission lines for EMC applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 49, 237-257, 2007.
doi:10.1109/TEMC.2007.897162