1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059, 1987.
doi:10.1103/PhysRevLett.58.2059 Google Scholar
2. John, S., "Strong localization of photons in certain disordered dielectric super-lattices," Phys. Rev. Lett., Vol. 58, 2486, 1987.
doi:10.1103/PhysRevLett.58.2486 Google Scholar
3. Joannopoulos, J. J., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, 1995.
4. Hojo, H. and A. Mase, "Dispersion relation of electromagnetic wave in one-dimensional plasma photonic crystals," J. Plasma Fusion Res., Vol. 80, 89, 2004.
doi:10.1585/jspf.80.89 Google Scholar
5. Ginzburg, V. L., The Propagation of Electromagnetic Waves in Plasmas, Pergamon, 1970.
6. Zhang, H. F., S. B. Liu, X. K. Kong, L. Zou, C. Z. Li, and W. S. Qing, "Enhancement of omnidirectional photonic band gaps in one-dimensional dielectric plasma photonic crystals with a matching layer," Phys. Plasmas, Vol. 19, 022103, 2012.
doi:10.1063/1.3680628 Google Scholar
7. Li, C., S. Liu, X. Kong, H. Zhang, B. Bian, and X. Zhang, "A novel comb-like plasma photonic crystal filter in the presence of evanescent wave," IEEE Trans. Plasma Sci., Vol. 39, 1969-1973, 2011.
doi:10.1109/TPS.2011.2162653 Google Scholar
8. Zhang, H. F. and S. B. Liu, "Magneto-optical faraday effects in dispersive properties and unusual surface plasmon modes in the three-dimensional magnetized plasma photonic crystals," IEEE Photonics J., Vol. 6, 5300112, 2014. Google Scholar
9. Guo, B., "Photonic band gap structures of obliquely incident electromagnetic wave propagation in a one-dimension absorptive plasma photonic crystal," Phys. Plasmas, Vol. 16, 042508, 2009.
doi:10.1063/1.3116642 Google Scholar
10. Qi, L., "Photonic band structures of two-dimensional magnetized plasma photonic crystals," J. Appl. Phys., Vol. 111, 073301, 2012.
doi:10.1063/1.3699213 Google Scholar
11. Zhang, H. F., "Investigations on the two-dimensional aperiodic plasma photonic crystals with fractal Fibonacci sequence," AIP Adv., Vol. 7, 2059-2549, 2017. Google Scholar
12. Shiveshwari, L., "Zero permittivity band characteristics in one-dimensional plasma dielectric photonic crystal," Optik, Vol. 122, 1523, 2011.
doi:10.1016/j.ijleo.2010.09.036 Google Scholar
13. Dehnavi, Z. N., H. R. Askari, M. Malekshahi, and D. Dorranian, "Investigation of tunable omnidirectional band gap in 1D magnetized full plasma photonic crystals," Phys. Plasmas, Vol. 24, 093517, 2017.
doi:10.1063/1.5004695 Google Scholar
14. Qi, L., Z. Yang, and T. Fu, "Defect modes in one-dimensional magnetized plasma photonic crystals with a dielectric defect layer," Phys. Plasmas, Vol. 19, 012509, 2012.
doi:10.1063/1.3677876 Google Scholar
15. Sakai, O. and K. Tachibana, "Plasmas as metamaterials: A review," Plasma Sources Sci. Technol., Vol. 21, 013001, 2012.
doi:10.1088/0963-0252/21/1/013001 Google Scholar
16. Zhang, H. F., S. B. Liu, and Y. C. Jiang, "The properties of photonic band gap and surface plasmon modes in the three-dimensional magnetized photonic crystals as the mixed polarized modes considered," Journal of Plasma Physics, Vol. 81, 90581020, 2015.
doi:10.1017/S0022377814001238 Google Scholar
17. Ardakani, A. G., "Nonreciprocal electromagnetic wave propagation in one-dimensional ternary magnetized plasma photonic crystals," J. Opt. Soc. Am. B, Vol. 31, 332, 2014.
doi:10.1364/JOSAB.31.000332 Google Scholar
18. Mehdian, Z. Mohammadzahery, and A. Hasanbeigi, "The effect of magnetic field on bistability in 1D photonic crystal doped by magnetized plasma and coupled nonlinear defects," Phys. Plasmas, Vol. 21, 012101, 2014.
doi:10.1063/1.4858897 Google Scholar
19. Zhang, H. F., S. B. Liu, J. P. Zhen, and Y. J. Tang, "The right circular polarized waves in the three-dimensional anisotropic dispersive photonic crystals consisting of the magnetized plasma and uniaxial material as the Faraday effects considered," Phys. Plasmas, Vol. 21, No. 3, 032127, 2014.
doi:10.1063/1.4869729 Google Scholar
20. Zhang, H. F. and S. B. Liu, "The properties of surface plasmon modes and switching gap for extraordinary mode in the three-dimensional magnetized plasma photonic crystals based on the Vogit effects," IEEE Journal of Quantum Electronics, Vol. 50, No. 7, 518-588, 2014. Google Scholar
21. Zhang, H. F., S. B. Liu, H. Yang, and X. K. Kong, "Analysis of photonic band gap in dispersive properties of tunable three-dimensional photonic crystals doped by magnetized plasma," Phys. Plasmas, Vol. 20, 032118, 2013.
doi:10.1063/1.4798523 Google Scholar
22. Qi, L. and X. Zhang, "Band gap characteristics of plasma with periodically varying external magnetic field," Solid State Commun., Vol. 151, 1838, 2011.
doi:10.1016/j.ssc.2011.08.012 Google Scholar
23. Zhang, H. F., S. B. Liu, X. K. Kong, B. R. Bian, and Y. N. Cuo, "Dispersion properties of two-dimensional plasma photonic crystals with periodically external magnetic field," Solid State Commun., Vol. 152, 1221, 2012.
doi:10.1016/j.ssc.2012.04.055 Google Scholar
24. Zhang, H. F., S. Liu, and X.-K. Kong, "Properties of anisotropic photonic band gaps in three-dimensional plasma photonic crystals containing the uniaxial material with different lattices," Progress In Electromagnetics Research, Vol. 141, 267-289, 2013.
doi:10.2528/PIER13051703 Google Scholar
25. Zhang, H. F., S. B. Liu, and X. K. Kong, "Dispersion properties of three-dimensional plasma photonic crystals in diamond lattice arrangement," J. Lightwave Technol., Vol. 31, 1694, 2013.
doi:10.1109/JLT.2013.2256879 Google Scholar
26. Zhang, H. F., S. B. Liu, X. K. Kong, and R. B. Bian, "The characteristics of photonic band gaps for three-dimensional unmagnetized dielectric plasma photonic crystals with simple-cubic lattice," Opt. Commun., Vol. 288, 82-90, 2013.
doi:10.1016/j.optcom.2012.09.078 Google Scholar
27. Ho, K. M., C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: New layer-by-layer periodic structures," Solid State Commun., Vol. 89, 413-416, 1994.
doi:10.1016/0038-1098(94)90202-X Google Scholar
28. Kopperschmidt, P., "Tetragonal photonic woodpile structures," Appl. Phys. B, Vol. 76, 729-734, 2003.
doi:10.1007/s00340-003-1169-8 Google Scholar
29. Fan, S. H., P. R. Villeneuve, and J. D. Joannopoulos, "Theoretical investigation of fabrication-related disorder on the properties of photonic crystals," J. Appl. Phys., Vol. 78, 1415-1418, 1995.
doi:10.1063/1.360298 Google Scholar
30. Zhang, H. F., S. B. Liu, and X. K. Kong, "Investigation of anisotropic photonic band gaps in three-dimensional magnetized plasma photonic crystals containing the uniaxial material," Phys. Plasmas, Vol. 20, 092105, 2013.
doi:10.1063/1.4820771 Google Scholar
31. Zhang, H. F., S. B. Liu, and Y. C. Jiang, "Tunable all-angle negative refraction and photonic band gaps in two-dimensional plasma photonic crystals with square-like Archimedean lattices," Phys. Plasmas, Vol. 21, 092104, 2014.
doi:10.1063/1.4894213 Google Scholar
32. Maksymov, I. S., L. F. Marsal, M. A. Ustyantsev, and J. Pallarès, "Band structure calculation in two-dimensional Kerr-nonlinear photonic crystals," Opt. Commun., Vol. 248, 469-477, 2005.
doi:10.1016/j.optcom.2004.12.022 Google Scholar
33. Azuma, H., "Quantum computation with Kerr-nonlinear photonic crystals," Journal of Physics D: Applied Physics, Vol. 41, 369-374, 2012. Google Scholar
34. Youssefi, B., M. K. Moravvej-Farshi, and N. Granpayeh, "Two bit all-optical analog-to-digital converter based on nonlinear Kerr effect in 2D photonic crystals," Opt. Commun., Vol. 285, 3228-3233, 2012.
doi:10.1016/j.optcom.2012.02.081 Google Scholar
35. Zhang, H. F., "Three-dimensional function photonic crystals," Physica B, Vol. 525, 104-113, 2017. Google Scholar
36. Liu, X. J., Y. Liang, J. Ma, S. Q. Zhang, H. Li, X. Y. Wu, and Y. H. Wu, "Two-dimensional function photonic crystals," Physic E, Vol. 85, 227-237, 2017.
doi:10.1016/j.physe.2016.09.002 Google Scholar
37. Wu, X. Y., S. Q. Zhang, B. J. Zhang, X. J. Liu, J. Wang, H. Li, N. Ba, X. G. Yin, and J. W. Li, "The effect of defect layer on transmissivity and light field distribution in general function photonic crystals," Physica E, Vol. 53, 1, 2013.
doi:10.1016/j.physe.2013.03.020 Google Scholar
38. Fan, S., P. R. Villeneuve, and J. D. Joannopoulos, "Large omnidirectional band gaps in metallodielectric photonic crystals," Phys. Rev. B, Vol. 54, 11245-11251, 1996.
doi:10.1103/PhysRevB.54.11245 Google Scholar
39. McIntosh, K. A., L. J. Mahoney, K. M. Molvar, O. B. McMahon, S. Verghese, M. Rothschild, and E. R. Brown, "Three-dimensional metallodielectric photonic crystals exhibiting resonant infrared stop bands," Appl. Phys. Lett., Vol. 70, 2937, 1997.
doi:10.1063/1.118749 Google Scholar
40. Li, J., G. Sun, and C. T. Chan, "Optical properties of photonic crystals composed of metal-coated spheres," Phys. Rev. B, Vol. 73, 075117, 2006.
doi:10.1103/PhysRevB.73.075117 Google Scholar
41. Feng, L., M. H. Lu, V. Lomakin, and Y. Fainman, "Plasmonic photonic crystals with complete bandgap for surface plasmon polariton waves," Appl. Phys. Lett., Vol. 93, 231105, 2008.
doi:10.1063/1.3043581 Google Scholar
42. Tserkezis, C., "Effective parameters for periodic photonic structures of resonant elements," J. Phys. Condens Matter, Vol. 21, 155404, 2009.
doi:10.1088/0953-8984/21/15/155404 Google Scholar
43. Tserkezis, C., N. Stefanou, G. Gantzounis, and N. Papanikolaou, "Understanding artificial optical magnetism of periodic metal-dielectric-metal layered structures," Phys. Rev. B, Vol. 84, 115455, 2011.
doi:10.1103/PhysRevB.84.115455 Google Scholar
44. Park, D. J., C. Zhang, J. C. Ku, Y. Zhou, G. C. Schatz, and C. A. Mirkin, "Plasmonic photonic crystals realized through DNA-programmable assembly," Proc. Ntnl. Acad. Sci., Vol. 112, 977, 2015.
doi:10.1073/pnas.1422649112 Google Scholar
45. Dobson, D. C., J. Gopalakrishnan, and J. E. Pasciak, "An efficient method for band structure calculations in 3D photonic crystals," Journal of Computational Physics, Vol. 161, 668-679, 2000.
doi:10.1006/jcph.2000.6521 Google Scholar
46. Zhang, H. F., G. W. Ding, H. M. Li, and S. B. Liu, "Complete photonic band gaps and tunable self-collimation in the two-dimensional plasma photonic crystals with a new structure," Phys. Plasmas, Vol. 22, 022105, 2015.
doi:10.1063/1.4906886 Google Scholar
47. Ho, K. M., C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett., Vol. 65, 3152, 1990.
doi:10.1103/PhysRevLett.65.3152 Google Scholar
48. Li, L., "Use of Fourier series in the analysis of discontinuous periodic structures," J. Opt. Soc. Am. A, Vol. 13, 1870, 1996.
doi:10.1364/JOSAA.13.001870 Google Scholar