A three-box model, composed of a triangular memory polynomial, a look-up table, and a cross item among memory times, is proposed for power amplifiers. The model acquired good accuracy and linear effect and reduced the calculation coefficient. Moreover, the paper proposes the GRLS_IVSSLMS adaptive predistortion algorithm. This algorithm is based on the structure of indirect learning. This work uses 16QAM signal to drive a strongly nonlinear Doherty amplifier. Experimental results show that the proposed method is suitable for the adaptive predistortion of power amplifiers.
2. Mkadem, F., et al., "Multi band complexity reduced generalized memory polynomial poweramplifier digital predistortion," IEEE Trans. Microw. Theory Techn., Vol. 64, 1763, 2016, doi: 10.1109/TMTT.2016.2561279.
doi:10.1109/TMTT.2016.2561279
3. Hammi, O., et al., "Multi-basis weighted memory polynomial for RF power amplifiers behavioral modeling," IEEE MTT-S International Conf., Vol. 1, 2016, doi: 10.1109/IEEE-IWS.2016.7585475.
4. Ba, S. N., K. Waheed, and G. T. Zhou, "Efficient lookup table-based adaptive baseband predistortion architecture for memoryless nonlinearity," EURASIP Journal on Advances in Signal Processing, 379249, 2010, doi: 10.1155/2010/379249.
doi:10.1155/2010/379249
5. Chen, H. H., et al., "Joint polynomial and look-up-table predistortion power amplifier linearization," IEEE Trans. Circuit System, Vol. 53, 612, 2006, doi: 10.1109/TCSII.2006.877278.
doi:10.1109/TCSII.2006.877278
6. Yang, Z., et al., "PA linearization using multi-stage look-up-table predistorter with optimal linear weighted delay," IEEE International Conf. Signal Process., Vol. 47, 2012, doi: 10.1109/ICoSP.2012.6491529.
7. Kim, J., et al., "Digital predistortion of wideband signals based on power amplifier model with memory," Electronics Letters, Vol. 37, 1417, 2001, doi: 10.1049/el:20010940.
doi:10.1049/el:20010940
8. Morgan, D. R., et al., "A generalized memory polynomial model for digital predistortion of RF power amplifiers," IEEE Transactions on Signal Processing, Vol. 54, 3852, 2006, doi: 10.1109/TSP.2006.879264.
doi:10.1109/TSP.2006.879264
9. Yao, S., et al., "A recursive least squares algorithm with reduced complexity for digital predistortion linearization," IEEE International Conf. Signal Process., 4736, 2013, doi: 10.1109/ICASSP.2013.6638559.
10. Mandic, D. P., "A generalized normalized gradient descent algorithm," IEEE Signal Processing Letters, Vol. 11, 115, 2004, doi: 10.1109/LSP.2003.821649.
doi:10.1109/LSP.2003.821649
11. Liu, Y. J., et al., "A robust augmented complexity-reduced generalized memory polynomial for wideband RF power amplifiers," IEEE Trans. on Industrial Electronics, Vol. 61, 2389, 2014, doi: 10.1109/TIE.2013.2270217.
doi:10.1109/TIE.2013.2270217
12. Dawar, N., T. Sharma, R. Darraji, and F. M. Ghannouchi, "Linearisation of radio frequency power amplifiers exhibiting memory effects using direct learning-based adaptive digital predistoriton," IET Communications, Vol. 10, No. 8, 950-954, May 19, 2016, doi: 10.1049/iet-com.2015.1048.
doi:10.1049/iet-com.2015.1048
13. Carusone, A. C., "An equalizer adaptation algorithm to reduce jitter in binary receivers," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 53, No. 9, 807-811, Sep. 2006, doi: 10.1109/TCSII.2006.881161.
doi:10.1109/TCSII.2006.881161
14. Akhtar, M. T., M. Abe, and M. Kawamata, "A new variable step size LMS algorithm-based method for improved online secondary path modeling in active noise control systems," IEEE Transactions on Audio, Speech, and Language Processing, Vol. 14, No. 2, 720-726, Mar. 2006, doi: 10.1109/TSA.2005.855829.
doi:10.1109/TSA.2005.855829
15. Mitra, A., M. Chakraborty, and H. Sakai, "A block floating-point treatment to the LMS algorithm: Efficient realization and a roundoff error analysis," IEEE Transactions on Signal Processing, Vol. 53, No. 12, 4536-4544, Dec. 2005, doi: 10.1109/TSP.2005.859342.
doi:10.1109/TSP.2005.859342