Vol. 20

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-01-15

FDTD Analysis of Chiral Discontinuities in Waveguides

By De-An Cao and Qing-Xin Chu
Progress In Electromagnetics Research Letters, Vol. 20, 19-26, 2011
doi:10.2528/PIERL10120203

Abstract

A simple finite difference time domain (FDTD) scheme is proposed for modeling three-dimensional (3D) nondispersive chiral media. Based on the recently reported new BI-FDTD mesh method and rearranged curl equations, this scheme implements a simple leapfrog algorithm. By adding the mirror layer, the perfect electric conductor (PEC) condition is implemented in the BI-FDTD mesh method of 3D problem. Results of this scheme are presented for the scattering coefficients of discontinuity in waveguides, which are partially filled with chiral or achiral media. The validation is performed by comparing the results with those obtained from the literature and software simulation.

Citation


De-An Cao and Qing-Xin Chu, "FDTD Analysis of Chiral Discontinuities in Waveguides," Progress In Electromagnetics Research Letters, Vol. 20, 19-26, 2011.
doi:10.2528/PIERL10120203
http://www.jpier.org/PIERL/pier.php?paper=10120203

References


    1. Lindell, , I. V., , A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media , Artech House, MA, 1994.

    2. Sihvola, A. H., "Electromagnetic modeling of bi-isotropic media," Progress In Electromagnetics Research, Vol. 9, 45-86, 1994.

    3. Wu, X. Z. and D. L. Jaggard, "Three-dimensional discontinuities in chirowaveguides," Microwave Opt. Tech. Lett., Vol. 16, No. 5, 805-209, 1997.
    doi:10.1002/(SICI)1098-2760(19971205)16:5<315::AID-MOP14>3.0.CO;2-2

    4. Wu, T. X. and D. L. Jaggard, "A comprehensive study of discontinuities in chirowaveguides," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 10, 2320-2330, 2002.
    doi:10.1109/TMTT.2002.803426

    5. Bray, M. G., "Finite-difference time-domain simulation of electromagnetic bandgap and bi-anisotropic metamaterials,", Ph.D. Dissertation, Dept. of Electrical Engineering, Pennsylvania State Univ., University Park, 2005.

    6. Gomez, A. , et al., "Full-wave hybrid technique for 3D isotropic-chiral-material discontinuities in rectangular waveguides: Theory and experiment," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 12, 2815-2825, 2008.
    doi:10.1109/TMTT.2008.2007190

    7. Akyurtlu, A., "Modeling of bi-anisotropic media using the finite-difference time-domain method,", Ph.D. Dissertation, Dept. of Electrical Engineering, Pennsylvania State Univ., University Park, 2001.

    8. Akyurtlu, A. and D. H. Werner, "BI-FDTD: A novel finite-difference time-domain formulation for modeling wave propagation in bi-isotropic media," IEEE Trans. Antennas Propag., Vol. 52, No. 416-425, 2004.

    9. Ji, F., K. N. Yung Edward, and X. Q. Sheng, "Three-dimensional FDTD analysis of chiral discontinuities in the waveguide," Int. J. Infrared Millimeter Waves, Vol. 23, No. 10, 1521-1528, 2002.
    doi:10.1023/A:1020385721043

    10. Grande, A., et al., "FDTD modeling of transient microwave signals in dispersive and lossy bi-isotropic media," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 3, 773-784, 2004.
    doi:10.1109/TMTT.2004.823537

    11. Grande, A., I. Barba, A. C. L. Cabeceira, J. Represa, et al., "Two-dimensional extension of a novel FDTD technique for modeling dispersive lossy bi-isotropic media using the auxiliary differential equation method," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 5, 375-377, 2005.
    doi:10.1109/LMWC.2005.847732

    12. Alcantara, L. D. S., "An unconditionally stable FDTD method for electromagnetic wave propagation analysis in bi-isotropic media," IEEE MTT-S, 661-664, Brasilia, Brazil, 2006.

    13. Demir, V., A. Elsherbeni, and E. Arvas, "FDTD formulations for scattering from three dimensional chiral objects," 20th Annual Review of Progress in Applied Computational Electromagnetics, Syracuse, NY, 2004.

    14. Cao, D.-A. and Q.-X. Chu, "LOD-like method that characterizes the analytical solution," Progress In Electromagnetics Research Letters, Vol. 15, 127-136, 2010.
    doi:10.2528/PIERL10050504

    15. Bray, M. G. and D. H. Werner, "A simple dispersive chiral FDTD formulation implemented on a Yee grid," IEEE Antennas and Propagation Society International Symposium, Vol. 1, 126-129, 2005.

    16. Demir, V. , A. Z. Elsherbeni, E. Arvas, and , "FDTD formulation for dispersive chiral media using the Z transform method," IEEE Trans. Antennas Propag., Vol. 53, No. 10, 3374-3384, Oct. 2005.
    doi:10.1109/TAP.2005.856328

    17. Pereda, J. A. , A. Grande, O. Gonzalez, and A. Vegas, "FDTD modeling of chiral media by using the mobius transformation technique," IEEE Antennas and Wireless Propagat. Lett., Vol. 5, No. 1, 327-330, Dec. 2006.
    doi:10.1109/LAWP.2006.878902