Vol. 51
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-01-22
Very Compact Open-Slot Antenna for Wireless Communication Systems
By
Progress In Electromagnetics Research Letters, Vol. 51, 73-78, 2015
Abstract
A new very compact open slot antenna for wireless communication systems application has been designed and fabricated. With antenna overall dimension of 9.2 x 9.8 mm2, the proposed design can be used in many modern communication devices with size constraints. Experimental measurements have also been performed to validate the performance of the proposed antenna. The measured results show that the antenna provides a wide bandwidth of 48% (5-8.17 GHz) with an average size reduction of about 88% with respect to a conventional microstrip patch antenna.
Citation
Ali A. Al-Azza, Frances Harackiewicz, and Hemachandra Reddy Gorla, "Very Compact Open-Slot Antenna for Wireless Communication Systems," Progress In Electromagnetics Research Letters, Vol. 51, 73-78, 2015.
doi:10.2528/PIERL14122105
References

1. Minasian, A. A. and T. S. Bird, "Particle swarm optimization of microstrip antennas for wireless communication systems," IEEE Trans. Antennas Propag., Vol. 61, No. 12, 6214-6217, Dec. 2013.
doi:10.1109/TAP.2013.2281517

2. Chakraborty, U., A. Kundu, S. K. Chowdhury, and A. K. Bhattacharjee, "Compact dual-band microstrip antenna for IEEE 802.11a WLAN application," IEEE Antennas Wireless Propag. Lett., Vol. 13, 407-410, 2014.
doi:10.1109/LAWP.2014.2307005

3. Ali, M., T. Sittironnarit, H.-S. Hwang, R. A. Sadler, and G. J. Hayes, "Wide-band/dual-band packaged antenna for 5-6GHz WLAN application," IEEE Trans. Antennas Propag., Vol. 52, No. 2, 610-615, Feb. 2004.
doi:10.1109/TAP.2004.823992

4. Khidre, A., K.-F. Lee, A. Z. Elsherbeni, and F. Yang, "Wide band dual-beam U-slot microstrip antenna," IEEE Trans. Antennas Propag., Vol. 61, No. 3, 1415-1418, Mar. 2013.
doi:10.1109/TAP.2012.2228617

5. Zelenchuk, D. E. and V. F. Fusco, "Planar high-gain WLAN PCB antenna," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1314-1316, 2009.
doi:10.1109/LAWP.2009.2037718

6. Ansal, K. A. and T. Shanmuganatham, "ACS-fed wide band antenna with L-shaped ground plane for 5.5 GHz WLAN application," Progress In Electromagnetics Research Letters, Vol. 49, 59-64, 2014.
doi:10.2528/PIERL14053106

7. Lin, C.-C., C.-Y. Huang, and G.-H. Chen, "Obtuse pie-shaped quasi-self-complementary antenna for WLAN applications," IEEE Antennas Wireless Propag. Lett., Vol. 12, 353-355, 2013.
doi:10.1109/LAWP.2013.2250242

8. Tsai, L.-C., "A dual-band bow-tie-shaped CPW-fed slot antenna forWLAN applications," Progress In Electromagnetics Research C, Vol. 47, 167-171, 2014.

9. Li, Y., W. Li, and R. Mittra, "Miniaturization of ACS-fed dual-band antenna with loaded capacitance terminations for WLAN applications," IEICE Electronics Express, Vol. 10, No. 15, 20130455, 2013.
doi:10.1587/elex.10.20130455

10. Dinesh, R., V. K. T. Vinod, V. P. Sarin, V. A. Shameena, and P. Mohanan, "Asymmetrical grounded CPW-fed antenna for WLAN applications," Microwave and Optical Technology Letters, Vol. 55, No. 11, 2739-2741, 2013.
doi:10.1002/mop.27932

11. Kamakshi, J. A. Ansari, A. Singh, and M. Aneesh, "Desktop shaped broadband microstrip patch antennas for wireless communications," Progress In Electromagnetics Research Letters, Vol. 50, 13-18, 2014.
doi:10.2528/PIERL14092903

12. Balanis, C. A., Modern Antenna Handbook, John Wiley & Sons, 2011.