Vol. 25
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-08-17
Infrared Omni-Directional Mirror Based on One-Dimensional Birefringent-Dielectric Photonic Crystal
By
Progress In Electromagnetics Research M, Vol. 25, 211-222, 2012
Abstract
In the present communication, we have theoretically investigated and studied the reflection properties of one-dimensional birefringent-dielectric photonic crystal (1D BDPC) structure consisting alternate layers of BD material. From the analysis of the reflectance spectra it is found that 100% reflection region for both TE- and TM-mode can be enhanced significantly in comparison with 1D dielectric-dielectric photonic crystal (DDPC). In order to obtain the reflection spectra of the proposed structure we have used the transfer matrix method (TMM). The structure proposed by us, has a wider omnidirectional reflection (ODR) range in comparison to conventional all dielectric photonic crystals (PCs). The width of ODR can be enlarged by considering the suitable choice of lattice parameters.
Citation
Maitreyi Upadhyay, Suneet Awasthi, Sanjeev Srivastava, and Sant Ojha, "Infrared Omni-Directional Mirror Based on One-Dimensional Birefringent-Dielectric Photonic Crystal," Progress In Electromagnetics Research M, Vol. 25, 211-222, 2012.
doi:10.2528/PIERM12061802
References

1. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, "Photonic Crystals: Molding the Flow of Light," Princeton University Press, 1995.

2. Kumar, V., K. S. Singh, S. K. Singh, and S. P. Ojh, "Broad-ening of omni-directional reflection range in 1-d photonic crystal by using photonic quantum well structures," Optik --- International Journal for Light and Electron Optics, 2011, http://www.sciencedirect.com/science/article/pii/S0030402611005651.

3. Ouchani, N., D. Bria, B. Djafari Rouhani, and A. Nougaoui, "A birefringent reflector from a 1D anisotropic photonic crystal," J. Phys.: Condens. Matter., Vol. 21, 485401-485410, 2009.
doi:10.1088/0953-8984/21/48/485401

4. Chigrin, D. N., "Omnidirectional bragg mirror," Electromagnetic Waves Propagation in Photonic Crystals with Incomplete Photonic Band Gap, 62-75, Thesis, University of Wuppertal, 2003.

5. Guida, G., A. de Lustrac, and A. Priou, "An introduction to photonic band gap (PBG) materials," Progress In Electromagnetics Research, Vol. 41, 1-20, 2003.
doi:10.2528/PIER02010801

6. Srivastava, R., K. B. Thapa, S. Pati, and S. P. Ojha, "Omni-direction reflection in one dimensional photonic crystal," Progress In Electromagnetics Research B, Vol. 7, 133-143, 2008.
doi:10.2528/PIERB08020601

7. Singh, S. K., J. P. Pandey, K. B. Thapa, and S. P. Ojha, "Structural parameters in the formation of omnidirectional high reflectors," Progress In Electromagnetics Research, Vol. 70, 53-78, 2007.
doi:10.2528/PIER07010501

8. Srivastava, R., S. Pati, and S. P. Ojha, "Enhancement of omnidirectional reflection in photonic crystal heterostructures," Progress In Electromagnetics Research B, Vol. 1, 197-208, 2008.
doi:10.2528/PIERB07102903

9. Awasthi, S. K., U. Malaviya, and S. P. Ojha, "Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material," J. Opt. Soc. Am. B, Vol. 23, 2566-2571, 2006.
doi:10.1364/JOSAB.23.002566

10. Winn, , J. N., Y. Fink, S. Fan, and J. D. Joannopoulos, "Omnidirectional re°ection from a one-dimensional photonic crystal," Opt. Lett., Vol. 23, 1573-1575, 1998.
doi:10.1364/OL.23.001573

11. Chigrin, D. N., A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, "Observation of total omnidirectional from a one-dimensional dielectric lattice," Appl. Phys. A, Vol. 68, 25-28, 1999.
doi:10.1007/s003390050849

12. Srivastava, S. K. and S. P. Ojha, "Omnidirectional reflection bands in one-dimensional PC structure using fullerene fllms," Progress In Electromagnetics Research, Vol. 74, 181-194, 2007.
doi:10.2528/PIER07050202

13. Wang, X., X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, "Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using heterostructures," Appl. Phys. Lett., Vol. 80, 4291-4293, 2002.
doi:10.1063/1.1484547

14. Perez, E. X., L. F. Marsal, J. Pallares, and J. F. Borrull, "Porous silicon mirrors with enlarged omnidirectional bandgap," J. Appl. Phys., Vol. 97, 064503-1-064503-5, 2005.

15. Banerjee, D, M, and Zhang, "Quarter-wave design criteria for omnidirectional structural colors," Journal of Modern Optics, Vol. 57, 1180-1188, 2010.
doi:10.1080/09500340.2010.506956

16. Wu, C.-J., Y.-C. Hsieh, and H.-T. Hsu, "Tunable photonic band gap in a doped semiconductor photonic crystal in near infrared region," Progress In Electromagnetics Research, Vol. 114, 271-283, 2011.

17. Kumar, N. and S. P. Ojha, "Photonic crystals as infrared broadband reflectors with different angles of incidence: A comparative study," Progress In Electromagnetics Research, Vol. 80, 431-445, 2008.
doi:10.2528/PIER07120502

18. Banerjee, A., "Enhanced refractometric optical sensing by using one-dimensional ternary photonic crystals," Progress In Electromagnetics Research, Vol. 89, 11-22, 2009.
doi:10.2528/PIER08112105

19. Wu, C.-J. and Z.-H. Wang, "Properties of defect modes in one-dimensional photonic crystals," Progress In Electromagnetics Research, Vol. 103, 169-184, 2010.
doi:10.2528/PIER10031706

20. Awasthi, S. K., U. Malaviya, S. P. Ojha, N. K. Mishra, and B. Singh, "Design of a tunable polarizer using a one-dimensional nano sized photonic bandgap structure," Progress In Electromagnetics Research B, Vol. 5, 133-152, 2008.
doi:10.2528/PIERB08021004

21. Wu, C.-J., Y.-H. Chung, B.-J. Syu, and T.-J. Yang, "Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal," Progress In Electromagnetics Research, Vol. 102, 81-93, 2010.
doi:10.2528/PIER10012004

22. Abdulhalim, I., "Omnidirectional reflection from anisotropic periodic dielectric stack," Opt. Commun., Vol. 174, 43-50, 2000.
doi:10.1016/S0030-4018(99)00672-0

23. Cojocaru, E., "Forbidden gaps in periodic anisotropic layered media," Appl. Opt., Vol. 39, 4641-4648, 2000.
doi:10.1364/AO.39.004641

24. Awasthi, S. K., U. Malaviya, and S. P. Ojha, "Enhancement of omnidirectional high-reflection wavelength range in one-dimensional ternary periodic structures: A comparative study," J. Nanophotonics, Vol. 2, 023505, 2008.
doi:10.1117/1.2909452

25. Orfanidis, S. J., "Multilayer film applications," Electromagnetic Waves and Antennas, 193-194, 2008,www.ece.rutgers.edu/»orfanidi/ewa.

26. Macleod, H. A., "Basic theory," Thin-film Optical Filters, 32-43, Adam Hilger Ltd., Bristol, 1986.

27. Ye, Y.-H., G. Bader, and V.-V. Truong, "Low-loss one-dimensional metallodielectric photonic crystals fabricated by metallic insertions in a multilayer dielectric structure," Appl. Phys. Lett., Vol. 77, 235-237, 2000, doi:10.1063/1.126935.
doi:10.1063/1.126935

28. El-Kady, I., M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, "Metallic photonic crystals at optical wavelengths," Phy. Rev. B, Vol. 62, 15299-15302, 2000, doi:10.1063/1.126935.
doi:10.1103/PhysRevB.62.15299