Vol. 54
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-02-02
A Linear Mutually Coupled Parallel Dipole Antenna Array Failure Correction Using Bat Algorithm
By
Progress In Electromagnetics Research M, Vol. 54, 9-18, 2017
Abstract
In this work, the problem of mutually coupled dipole antenna array failure has been solved using bat algorithm by adjusting only the amplitude excitation of good array elements. The element failure causes the degradation of side-lobe power level to an improper level. A fitness function is formulated to obtain the difference between degraded side-lobe pattern and measured side-lobe pattern, and a flexible approach using bat algorithm is used to minimize this function. Numerical examples of single and multiple element failure correction under mutual coupling conditions are discussed to show the capability of this proposed approach.
Citation
Narwant Singh Grewal, Munish Rattan, and Manjeet Patterh, "A Linear Mutually Coupled Parallel Dipole Antenna Array Failure Correction Using Bat Algorithm," Progress In Electromagnetics Research M, Vol. 54, 9-18, 2017.
doi:10.2528/PIERM16120202
References

1. Zainud-Deen, S. H., M. S. Ibrahem, H. A. Sharshar, and S. M. M. Ibrahem, "Array failure correction with orthogonal method," Proceedings of the Twenty-First National Radio Science Conference, B7-1-9, Cairo, Egypt, Mar. 16-18, 2004.

2. Peters, T. J., "A conjugate gradient based algorithm to minimize the side lobe level of planar arrays with element failure," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 10, 1497-1504, Oct. 1991.
doi:10.1109/8.97381

3. Mailloux, R. J., "Array failure correction with a digitally beamformed array," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 12, 1543-1550, Dec. 1996.
doi:10.1109/8.546240

4. Yeo, B. K. and Y. Lu, "Array failure correction with a genetic algorithm," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 5, 823-828, May 1999.
doi:10.1109/8.774136

5. Rodriquez, J. A., F. Ares, and E. Moreno, "Genetic algorithm procedure for linear array failure correction," Electronic Letters, Vol. 36, No. 3, 196-198, Feb. 2000.
doi:10.1049/el:20000236

6. Wang, L. and D. Fang, "Combination of genetic algorithm and fast fourier transform for array failure correction," 6th International Symposium on Antennas, Propagation and EM Theory, 234-237, Beijing, China, Oct. 28-Nov. 1, 2003.

7. Padron, A. and J. L. Garduno, "Antenna array adjust with adaptive neuronal system," Journal of Applied Research and Technology, Vol. 2, No. 3, 189-198, Dec. 2004.

8. Lozano, M. V. and J. A. Rodriquez, "Recalculating linear array antennas to compensate for failed elements while maintaining fixed nulls," IEEE International Symposium on Antennas and Propagation, Vol. 3, 2048-2051, Orlando, FL, USA, Jul. 11-16, 1999.

9. Redvik, J., "Simulated annealing optimization applied to antenna arrays with failed elements," IEEE International Symposium on Antennas and Propagation, Vol. 1, 458-461, Orlando, FL, USA, Jul. 11-16, 1999.

10. Yeo, B. K. and Y. Lu, "Fast array failure correction using improved particle swarm optimization," Asia Pacific Microwave Conference, 1537-1540, Singapore, Dec. 7-10, 2009.

11. Acharya, O. P., A. Patnaik, and S. N. Sinha, "Null steering in failed antenna array," National Conference on Communication, 1-4, Bangalore, Jan. 28-30, 2011.

12. Acharya, O. P., A. Patnaik, and S. N. Sinha, "Null steering in failed antenna array," Journal Applied Computational Intelligence and Soft Computing, Vol. 2011, 1-9, 2011.

13. Grewal, N. S., M. Rattan, and M. S. Patterh, "A Linear antenna array failure correction using firefly algorithm," Progress In Electromagnetics Research M, Vol. 27, 241-254, 2012.
doi:10.2528/PIERM12101903

14. Grewal, N. S., M. Rattan, and M. S. Patterh, "A linear antenna array failure correction with null steering using firefly algorithm," Defence Science Journal, Vol. 64, No. 2, 136-142, Mar. 2014.
doi:10.14429/dsj.64.4250

15. Pathak, N., B. Basu, and G. K. Mahanti, "Combination of inverse fast Fourier transform and modified particle swarm optimization for synthesis of thinned mutually coupled linear array of parallel half wave length dipole antennas," Progress In Electromagnetics Research M, Vol. 16, 105-115, 2011.
doi:10.2528/PIERM10101003

16. Keizer, W. P. M. N., "Low-sidelobe pattern synthesis using iterative fourier techniques coded in MATLAB," IEEE Antennas and Propagation Magazine, Vol. 51, No. 2, 137-150, 2009.
doi:10.1109/MAP.2009.5162038

17. Elliott, R. S., Antenna Theory and Design, Prentice-Hall, New York, NY, USA, 1981.

18. Rodriguez, J. A., F. Ares, and E. Moreno, "Feeding in-phase dipole arrays: A tutorial and a MATLAB program," IEEE Antennas and Propagation Magazine, Vol. 47, No. 5, 169-173, 2005.
doi:10.1109/MAP.2005.1599200

19. Muralidharan, R., V. Athinarayanan, G. K. Mahanti, and A. Mahanti, "QPSO versus BSA for failure correction of linear array of mutually coupled parallel dipole antennas with fixed side lobe level and VSWR," Journal of Advances in Electrical Engineering, Vol. Hindawi, Sep. 2014, 1-7, 2014.

20. Yang, X.-S., "A new metaheuristic bat-inspired algorithm," Nature Inspired Cooperative Strategies for Optimization (NISCO 2010), Vol. 284, 65-74, (Gonzalez, J. R. et al., editors), Springer, SCI, 2010.
doi:10.1007/978-3-642-12538-6_6

21. Yang, X.-S., "Bat algorithm for multiobjective optimization," International Journal Bio-Inspired Computation, Vol. 3, 267-274, 2011.
doi:10.1504/IJBIC.2011.042259

22. Guney, K. and A. Akdagli, "Null steering of linear antenna array using modified tabu search algorithm," Progress In Electromagnetic Research, Vol. 33, 167-182, 2001.
doi:10.2528/PIER00121402