Vol. 114
Latest Volume
All Volumes
2011-02-22
Double and Triple Langmuir Probes Measurements in Inductively Coupled Nitrogen Plasma
By
Progress In Electromagnetics Research, Vol. 114, 113-128, 2011
Abstract
The double and triple Langmuir probe diagnostic systems with their necessary driving circuits are developed successfully for the characterization of laboratory built low pressure inductively coupled nitrogen plasma, generated by 13.56 MHz radio frequency (RF) power supply along with an automatic impedance matching network. Using the DC properties of these two probes, the discharge plasma parameters like ion saturation current (Iio), electron temperature (kTe) and electron number density (ne) are measured at the input RF power ranging from 250 to 400 W and filling gas pressures ranging from 0.3 to 0.6 mbar. An increasing trend is observed in electron temperature kTe and ne with the increase of input RF power at a fixed filling gas pressure of 0.3 mbar, while a decreasing trend is observed in kTe and ne with the increase of filling gas pressure at a fixed input RF power of 250 W.
Citation
Muhammad Yasin Naz, Abdul Ghaffar, N. U. Rehman, S. Naseer, and Muhammad Zakaullah, "Double and Triple Langmuir Probes Measurements in Inductively Coupled Nitrogen Plasma," Progress In Electromagnetics Research, Vol. 114, 113-128, 2011.
doi:10.2528/PIER10110309
References

1. Grill, A., Cold Plasma in Materials Fabrication, IEEE Press, New York, 1993.

2. John, P. I, Plasma Sciences and the Creation of Wealth, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2005.

3. Franklin, R. N., Plasma Phenomena in Gas Discharges, Oxford University Press, Oxford, 1977.

4. Moore, G. L., Introduction to Inductively Coupled Plasma Atomic Emission Spectroscopy, Vol. 3, Elsevier, New York, 1989.

5. Jain, R. and M. V. Kartikeyan, "Design of a 60 GHz, 100 kW CW gyrotron for plasma diagnostics: GDS-V.01 simulations," Progress In Electromagnetics Research B, Vol. 22, 379-399, 2010.
doi:10.2528/PIERB10061508

6. Yamaguchi, S., G. Sawa, and M. Ieda, "Variation of ion current flowing into double probes with coating of organic thin film in RF discharge plasma," J. Appl. Phys., Vol. 26, No. 5, 728, 1987.

7. Chen, F. F., Plasma Diagnostic Techniques, Academic Press, New York, 1965.

8. Huddlestone, R. H. and S. L. Leonard, Plasma Diagnostic Technique, Academic Press, New York, 1965.

9. Pandey, R. S., "Cold plasma injection on VLF wave mode for relativistic magnetoplasma with A.C. electric field," Progress In Electromagnetics Research C, Vol. 2, 217-232, 2008.
doi:10.2528/PIERC08022501

10. Manory, R. R., U. Carmi, R. Avni, and A. Grill, "A comparative study of silicon deposition from SiCl4 in cold plasma using argon, H2 or Ar + H2," Thin Solid Films, Vol. 156, 1988.

11. Sha, W. E. I. and W. C. Chew, "High frequency scattering by an impene-trable sphere," Progress In Electromagnetics Research, Vol. 97, 291-325, 2009.
doi:10.2528/PIER09100102

12. Costa, E. M. M., "Parasitic capacitances on planar coil," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2339-2350, 2009.
doi:10.1163/156939309790416198

13. Wen, S. and L. Zhu, "Numerical synthesis design of coupled resonator filters," Progress In Electromagnetics Research, Vol. 92, 333-346, 2009.
doi:10.2528/PIER09041102

14. Jian, L. and K. T. Chau, "Analytical calculation of magnetic field distribution in coaxial magnetic gears," Progress In Electromagnetics Research, Vol. 92, 1-16, 2009.
doi:10.2528/PIER09032301

15. Shiri, A. and A. Shoulaie, "A new methodology for magnetic force calculations between planar spiral coils," Progress In Electromagnetics Research, Vol. 95, 39-57, 2009.
doi:10.2528/PIER09031608

16. Wu, H. W. and R. Y. Yang, "Design of a triple-passban microstrip bandpass filter with compact size," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2333-2341, 2010.
doi:10.1163/156939310793675736

17. Yin, Q., L. S. Wu, L. Zhou, and W. Y. Yin, "Compact dual-band bandpass filter using asymmetrical dual stub-loaded open loops," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2397-2406, 2010.
doi:10.1163/156939310793675718

18. Xia, Q., Z. X. Tang, and B. Zhang, "A Ku-band push-pus dielectric resonator oscillator," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14-15, 1859-1866, 2010.

19. Pandey, R. S., "Gradient effect on kelvin helmholtz instability in the presence of inhomogeneous d.c. electric field," Progress In Electromagnetics Research B, Vol. 11, 39-53, 2009.
doi:10.2528/PIERB08073101

20. Ibrahiem, A., C. Dale, W. Tabbara, and J. Wiart, "Analysis of the temperature increase linked to the power induced by RF source," Progress In Electromagnetics Research, Vol. 52, 23-46, 2005.
doi:10.2528/PIER04062501

21. Rossnagel, S. M., R. J. Cuomo, and W. D. Westwood, Handbood of Plasma Processing Technology, Noyes Publications, Park Ridge, N.J., 1910.

22. Yong-ik, S., H. B. Lim, and R. S. Houk, "Diagnostic studies of low-pressure inductively coupled plasma in argon using a double Langmuir probe," J. Anal. At. Spectrom., Vol. 17, 565-569, 2002.

23. Pu, Y. K., Z. G. Guo, A. U. Rehman, and Z. D. Yu, "Tuning effect of inert gas mixing on electron energy distribution function in inductively coupled discharges," Ma. J. Plasma Phys. and Control. Fusion, Vol. 48, 2006.

24. Pandey, R. S. and D. K. Singh, "Study of electromagnetic ion-cyclotron instability in a magnetoplasma," Progress In Electromagnetics Research M, Vol. 14, 147-161, 2010.
doi:10.2528/PIERM10052501