Vol. 22
Latest Volume
All Volumes
2010-06-11
Quantitative Estimation of Scattering Waves in Cylinder-Body Model for Body Area Networks: Comparison of Analyses with Unifrom Cylinder- and Slab-Body Models
By
Progress In Electromagnetics Research B, Vol. 22, 145-170, 2010
Abstract
This paper estimates separately the components of scattering waves generated in cylinder-body model for body area networks. For the evaluation, scattering field formulations in relation to uniform cylinder- and slab-body models are provided, and the reliability of the analyses is testified by the comparison with results computed by the finite-difference time-domain (FDTD) method. Creeping waves, cylinder leaky waves, and cylinder guided waves, which are created only in cylindrical structure, are extracted quantitatively by contrasting the scattering waves that are calculated with the two body models. In addition to the extracted waves, other components of scattering waves such as reflected waves, transmitted waves, surface waves, leaky waves, and guided waves also are examined. From evaluations with various operating frequencies and thicknesses of the body model, it is confirmed that reflected waves have the most influence on electrical characteristics of a source. Moreover creeping waves and cylinder leaky waves are generally dominant at the opposite side of the cylinder when a source is located near cylinder surface. Furthermore, the existence of creeping waves with low attenuation in the vicinity of cylinder surface is demonstrated by electric field intensities calculated by varying the observation point along cylinder axis.
Citation
Chang-Yong Seo, Kazuyuki Saito, Masaharu Takahashi, and Koichi Ito, "Quantitative Estimation of Scattering Waves in Cylinder-Body Model for Body Area Networks: Comparison of Analyses with Unifrom Cylinder- and Slab-Body Models," Progress In Electromagnetics Research B, Vol. 22, 145-170, 2010.
doi:10.2528/PIERB10042801
References

1. Weiser, M., "The computer for the twenty-first century," Scientific American, 66-75, Sep. 1991.

2. Zimmerman, T. G., "Personal area networks: Near-field intrabody communication," IBM Systems Journal, Vol. 35, No. 3, 609-617, 1996.
doi:10.1147/sj.353.0609

3. Steinhaus, B. M., R. E. Smith, and P. Crosby, "The role of telecommunications in future implantable device systems," Proc. IEEE Conference on Medicine and Biology, 1013-1014, Nov. 1994.

4. Hall, P. S. and Y. Hao, Antennas and Propagation for Body-centric Wireless Communications, Artech House Norwood, MA, 2006.

5. Klemm, M. and G. Troester, "Textile UWB antennas for wireless body area networks," IEEE Trans. Antennas and Propagation, Vol. 54, No. 11, 3192-3197, Nov. 2004.
doi:10.1109/TAP.2006.883978

6. Haga, N., K. Saito, M. Takahashi, and K. Ito, "Characteristics of cavity slot antenna for body-area networks," IEEE Trans. Antennas and Propagation, Vol. 57, No. 4, 837-843, Apr. 2009.
doi:10.1109/TAP.2009.2014577

7. Izdebski, P. M., H. Rajagopalan, and Y. Rahmat-Samii, "Conformal ingestible capsule antenna: A novel chandelier meandered design," IEEE Trans. Antennas and Propagation, Vol. 57, No. 4, 900-909, Apr. 2009.
doi:10.1109/TAP.2009.2014598

8. Hall, P. S., Y. Hao, Y. I. Nechayev, A. Alomainy, C. C. Constantinou, C. Parini, M. R. Kamarudin, T. Z. Salim, D. T. M. Hee, R. Dubrovka, A. S. Owadally, W. Song, A. Serra, P. Nepa, M. Gallo, and M. Bozzetti, "Antennas and propagation for onbody communication systems," IEEE Antennas and Propagation Mag., Vol. 49, No. 3, 41-58, Jun. 2007.
doi:10.1109/MAP.2007.4293935

9. Pelosi, M., O. Franek, M. B. Knudsen, M. Christensen, and G. F. Pedersen, "A grip study for talk and data modes in mobile phones," IEEE Trans. Antennas and Propagation, Vol. 57, No. 4, 856-865, Apr. 2009.
doi:10.1109/TAP.2009.2014590

10. Wang, Q., T. Tayamachi, I. Kimura, and J. Wang, "An on-body channel model for UWB body area communications for various postures," IEEE Trans. Antennas and Propagation, Vol. 57, No. 4, 991-998, Apr. 2009.
doi:10.1109/TAP.2009.2014526

11. Fujii, K., M. Takahashi, and K. Ito, "Electric field distributions of wearable devices using the human body as a transmission channel," IEEE Trans. Antennas and Propagation, Vol. 55, No. 7, 2080-2087, Jul. 2007.
doi:10.1109/TAP.2007.900226

12. Conway, G. A. and W. G. Scanlon, "Antennas for over-body-surface communications at 2.45 GHz," IEEE Trans. Antennas and Propagation, Vol. 57, No. 4, 844-855, Apr. 2009.
doi:10.1109/TAP.2009.2014525

13. Simunic, D. and M. Djurek, "Electromagnetic dosimetry issues related to human exposure from body area networks devices," Proc. 2008 International Symposium on Applied Sciences on Biomedical and Communication Technology, 1-5, Oct. 2008.

14. King, R. W. P., S. Prasad, and B. H. Sandler, "Transponder antennas in and near a three-layered body," IEEE Trans. Microwave Theory and Techniques, Vol. 28, 586-596, Jun. 1980.
doi:10.1109/TMTT.1980.1130124

15. Lea, A., H. Ping, J. Ollikainen, and R. G. Vaughan, "Propagation between on-body antennas," IEEE Trans. Antennas and Propagation, Vol. 57, No. 11, 3619-3627, Nov. 2009.
doi:10.1109/TAP.2009.2031917

16. Sasamori, T., M. Takahashi, and T. Uno, "Transmission mechanism of wearable device for on-body wireless communications," IEEE Trans. Antennas and Propagation, Vol. 57, No. 4, 936-942, Apr. 2009.
doi:10.1109/TAP.2009.2014575

17. Paknys, R., "Reflection and transmission by reinforced concrete-Numerical and asymptotic analysis," IEEE Trans. Antennas and Propagation, Vol. 51, No. 10, 2852-2861, Oct. 2003.
doi:10.1109/TAP.2003.817998

18. Paknys, R. and D. R. Jackson, "The relation between creeping waves, leaky waves, and surface waves," IEEE Trans. Antennas and Propagation, Vol. 53, No. 3, 898-907, Mar. 2005.
doi:10.1109/TAP.2004.842625

19. Harrington, R. F., Time-harmonic Electromagnetic Fields, IEEE Press, New York, 2001.

20. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, New York, 1995.

21. Tai, C. T., Dyadic Green Functions in Electromagnetic Fields, 2 Ed., IEEE Press, New York, 1993.

22. Felsen, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, IEEE Press, New York, 1994.

23. Human body dimensions data for ergonomic design, Vol. 2, No. 1, 83-84 Report of National Institute of Bioscience and Human-technology, 1994 (in Japanese).

24. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Physics in Medicine and Biology, Vol. 41, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002

25. Mathews, J. H. and K. K. Fink, Numerical Methods Using Matlab, 4 Ed., Prentice-Hall Inc., New Jersey, 2004.