Vol. 24
Latest Volume
All Volumes
2010-08-12
ELF-EMFs Induced Effects on Cell Lines: Controlling ELF Generation in Laboratory
By
Progress In Electromagnetics Research B, Vol. 24, 131-153, 2010
Abstract
The aim of this paper is to discuss the effects of the exposure to Extremely Low Frequency ElectroMagnetic Fields (ELF-EMFs) on non- and excitable cells using in vitro cell models, namely neuron-like cell line (PC12), glioblastoma GL15 as glial model and C2C12 myocytes as muscle model, focusing our attention on standardized protocols for ELF-EMFs generation and exposure. A major issue in laboratory -and likely in natura- studies about possible biological effects of ELF waves is the difficulty in providing standard, reproducible environmental conditions. Hence, as part of the work we have developed an exposure system including a probing scanner, able to sample a given volume and to measure the time-varying magnetic field vector. The system allows detection, monitoring and removal of electromagnetic noise sources, as well as means to assess field homogeneity in terms of intensity and polarization.
Citation
Marco Farina, Marcello Farina, Maria A. Mariggio, Tiziana Pietrangelo, Joseph J. Stupak, Antonio Morini, and Giorgio Fano, "ELF-EMFs Induced Effects on Cell Lines: Controlling ELF Generation in Laboratory," Progress In Electromagnetics Research B, Vol. 24, 131-153, 2010.
doi:10.2528/PIERB10061709
References

1. Coen, R. L., "Don't be shocked, power lines are safe!," IEEE Spectrum, Vol. 37, No. 9, 22, 2000.
doi:10.1109/MSPEC.2000.866275

2. Odaa, T. and T. Koike, "Magnetic field exposure saves rat cerebellar granule neurons from apoptosis in vitro," Neuroscience Lett., Vol. 365, 83-86, 2004.
doi:10.1016/j.neulet.2004.04.068

3. Lisi, A., et al. "Exposure to 50 Hz electromagnetic radiation promote early maturation and di®erentiation in newborn rat cerebellar granule neurons," J. Cell Physiol., Vol. 204, No. 2, 532-538, 2005.
doi:10.1002/jcp.20322

4. Nikolova, T., et al. "Electromagnetic fields affect transcript levels of apoptosis-related genes in embryonic stem cell-derived neural progenitor cells," FASEB J., Vol. 19, No. 12, 1686-1688, 2005.

5. Sieron, A., et al. "Alternating extremely low frequency magnetic field increases turnover of dopamine and serotonin in rat frontal cortex," Bioelectromagnetics, Vol. 25, No. 6, 426-430, 2004.
doi:10.1002/bem.20011

6. Kavet, R., M. A. Stuchly, W. H. Bailey, and T. D. Bracken, "Evaluation of biological effects, dosimetric models, and exposure assessment related to ELF electric- and magnetic-field guidelines," Appl. Occup. Environ. Hyg., Vol. 16, No. 12, 1118-1138, 2001.
doi:10.1080/104732201753339622

7. Foster, K. R., "Mechanisms of interaction of extremely low frequency electric fields and biological systems," Radiat. Prot. Dosimetry, Vol. 106, No. 4, 301-310, 2003.

8. Santini, M. T., et al. "Cellular effects of extremely low frequency (ELF) electromagnetic fields," Int. J. Radiat. Biol., Vol. 85, No. 4, 294-313, 2009.
doi:10.1080/09553000902781097

9. Repacholi, M. H., "WHO's health risk assessment of ELF fields," Radiat. Prot. Dosimetry, Vol. 106, No. 4, 297-299, 2003.

10. Preece, A. W., J. W. Hand, R. N. Clarke, and A. Stewart, "Power frequency electromagnetic fields and health. Where's the evidence?," Phys. Med. Biol., Vol. 45, No. 9, 139-154, 2000.
doi:10.1088/0031-9155/45/9/201

11. Piacentini, R., et al. "Extremely low-frequency electromagnetic fields promote in vitro neurogenesis via upregulation of Ca(v)1-channel activity," J. Cell. Physiol., Vol. 215, 129-139, 2008.
doi:10.1002/jcp.21293

12. Czyz, J., T. Nikolova, J. Schuderer, N. Kuster, and A. M. Wobus, "Non-thermal effects of power-line magnetic fields (50 Hz) on gene expression levels of pluripotent embryonic stem cells-the role of tumour suppressor p53," Mutat. Res., Vol. 557, No. 1, 63-74, 2004.

13. Simko, M. and M. O. Mattsson, "Extremely low frequency electromagnetic fields as effectors of cellular responses in vitro: Possible immune cell activation," J. Cell Biochem., Vol. 93, No. 1, 83-92, 2004.
doi:10.1002/jcb.20198

14. Frahm, J., M. Lantow, M. Lupke, D. G. Weiss, and M. Simko, "Alteration in cellular functions in mouse macrophages after exposure to 50 Hz magnetic fields," J. Cell. Biochem., Vol. 99, No. 1, 168-177, 2006.
doi:10.1002/jcb.20920

15. Villarini, M., M. Moretti, G. Scassellati-Sforzolini, B. Boccioli, and R. Pasquini, "Effects of co-exposure to extremely low frequency (50 Hz) magnetic fields and xenobiotics determined in vitro by the alkaline comet assay," Sci. Total Environ., Vol. 361, No. 1--3, 208-219, 2006.

16. Stronati, L., A. Testa, P. Villani, C. Marino, G. A. Lovisolo, D. Conti, F. Russo, A. M. Fresegna, and E. Cordelli, "Absence of genotoxicity in human blood cells exposed to 50 Hz magnetic fields as assessed by comet assay, chromosome aberration, micronucleus, and sister chromatid exchange analyses," Bioelectromagnetics, Vol. 25, No. 1, 41-48, 2004.
doi:10.1002/bem.10141

17. Canbay, C., "The essential environmental cause of multiple sclerosis disease," Progress In Electromagnetics Research, Vol. 101, 375-391, 2010.
doi:10.2528/PIER09112604

18. Greene, L. A. and A. S. Tischler, "Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor," Proceedings of the National Academy of Sciences of the United States of America, Vol. 73, 2424-2428, 1976.
doi:10.1073/pnas.73.7.2424

19. Mariggiò, M. A., G. Mazzoleni, T. Pietrangelo, S. Guarnieri, C. Morabito, N. Steimberg, and G. Fanò, "Calcium-mediated transductive systems and functionally active gap junctions in astrocyte-like GL15 cells," BMC Physiology, Vol. 1, 4, 2001.
doi:10.1186/1472-6793-1-4

20. Yaffe, D. and O. Saxel, "Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle," Nature, Vol. 270, 725-727, 1977.
doi:10.1038/270725a0

21. Iezzi, M., P. Felicetti, L. Borgia, T. Pannellini, G. Fanò, M. A. Mariggio, A. Pietrangelo, A. Mezzetti, F. Cuccurullo, and P. Musiani, "Effects of ELF-EMF exposure on haemopoiesis and mammary carcinogenesis in BALB/c mice," Biological Effects of Electromagnetic Fields, Vol. 1, 57-65, Kostarakis(ed.), 2006.

22. Falone, S., et al. "Chronic exposure to 50 Hz magnetic fields causes a significant weakening of antioxidant defence systems in aged rat brain," Int. J. Biochem. Cell. Biol., Vol. 40, No. 12, 2762-2770, 2008.
doi:10.1016/j.biocel.2008.05.022

23. Cellini, L., et al. "Bacterial response to the exposure of 50 Hz lectromagnetic fields," Bioelectromagnetics, Vol. 29, No. 4, 302-311, 2008.
doi:10.1002/bem.20391

24. Falone, S., et al. "Fifty hertz extremely low-frequency electromagnetic field causes changes in redox and differentiative status in neuroblastoma cells," Int. J. Biochem. Cell. Biol., Vol. 39, No. 11, 2093-2106, 2007.
doi:10.1016/j.biocel.2007.06.001

25. Di Loreto, S., et al. "Fifty hertz extremely low-frequency magnetic field exposure elicits redox and trophic response in ratcortical neurons," J. Cell. Physiol., Vol. 219, No. 2, 334-343, 2009.
doi:10.1002/jcp.21674

26. Anand, N. and L. G. Stead, "Neuron-specific enolase as a marker for acute ischemic stroke: A systematic review," Cerebrovasc Dis., Vol. 20, No. 4, 213-219, 2005.
doi:10.1159/000087701

27. Pietrangelo, T., et al. "Extracellular guanosine-5'triphosphate modulates myogenesis via intermediate Ca2+-activated K+currents on C2C12 mouse cells," J. Physiol., Vol. 572, Pt. 3, 721-733, 2006.

28. Mariggiò, M. A., et al. "Extremely low frequency electromagnetic fields and oxidative stress in excitable cell lines," Biological Effects of Electromagnetic Fields, Vol. 2, 1043-1050, Kostarakis (ed.), 2006.

29. Ross, S. M., "Combined DC and ELF magnetic fields can alter cell proliferation," Bioelectromagnetics, Vol. 15, No. 5, 493, 1994.
doi:10.1002/bem.2250150512

30. Van Den Heuvel, R., H. Leppens, G. Nemethova, and L. Verschaeve, "Haemopoietic cell proliferation in murine bone marrow cells exposed to extreme low frequency (ELF) electromagnetic fields," Toxicol in Vitro, Vol. 15, No. 4--5, 351-355, 2001.
doi:10.1016/S0887-2333(01)00035-2

31. Wolf, F. I., et al. "50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: Possible involvement of a redox mechanism," Biochim. Biophys. Acta., Vol. 1743, No. 1--2, 120-129, 2005.

32. Regoli, F., S. Gorbi, N. Machella, S. Tedesco, M. Benedetti, R. Bocchetti, A. Notti, D. Fattorini, F. Piva, and G. Principato, "Pro-oxidant effects of extremely low frequency electromagnetic fields in the land snail Helix aspersa," Free Radic. Biol. Med., Vol. 39, No. 12, 1620-1628, 2005.
doi:10.1016/j.freeradbiomed.2005.08.004

33. Harakawa, S., N. Inoue, T. Hori, K. Tochio, T. Kariya, K. Takahashi, F. Doge, H. Suzuki, and H. Nagasawa, "Effects of a 50 Hz electric field on plasma lipid peroxide level and antioxidant activity in rats," Bioelectromagnetics, Vol. 26, No. 7, 589-594, 2005.
doi:10.1002/bem.20137

34. Yokus, B., D. U. Cakir, M. Z. Akdag, C. Sert, and N. Mete, "Oxidative DNA damage in rats exposed to extremely low frequency electro magnetic fields," Free Radic Res., Vol. 39, No. 3, 317-323, 2005.
doi:10.1080/10715760500043603

35. Lee, B. C., H. M. Johng, J. K. Lim, J. H. Jeong, K. Y. Baik, T. J. Nam, J. H. Lee, J. Kim, U. D. Sohn, G. Yoon, S. Shin, and K. S. Soh, "Effects of extremely low frequency magnetic field on the antioxidant defense system in mouse brain: A chemiluminescence study," J. Photochem. Photobiol. B, Vol. 73, No. 1--2, 43-48, 2004.
doi:10.1016/j.jphotobiol.2003.10.003

36. Morabito, C., et al. "Modulation of redox status and calcium handling by extremely low-frequency electromagnetic field in C2C12 muscle cells; a real time, single-cell approach," FRBM, Vol. 48, 579-589, 2010.
doi:10.1016/j.freeradbiomed.2009.12.005

37. Hirose, E., et al. "A new 3-axis magnetic field measurement system based on hall elements," IEEE Trans. on Applied Superconductivity, Vol. 14, No. 2, 1814-1817, 2004.
doi:10.1109/TASC.2004.830869