1. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, Artech House, 1993.
doi:10.1007/978-1-4684-9904-9
2. Fante, R. L. and M. T. McCormack, "Reflection properties of Salisbury screen," IEEE Transactions on Antennas and Propagation, Vol. 36, 1443-1454, 1988.
doi:10.1109/8.8632 Google Scholar
3. Knott, E. F. and C. D Lunden, "The two-sheet capacitive Jaumann absorber," IEEE Transactions on Antennas and Propagation, Vol. 43, 1339-1343, 1995. Google Scholar
4. Zadeh, A. K. and A. Karlsson, "Capacitive circuit method for fast and efficient design of wideband radar absorbers," IEEE Transactions on Antennas and Propagation, Vol. 57, 2307-2314, 2009.
doi:10.1109/TAP.2009.2024490 Google Scholar
5. Tennant, A. and B. Chambers, "A single-layer tunable microwave absorber using an active FSS," IEEE Microw. Wireless Compon. Lett., Vol. 14, 46-47, 2004.
doi:10.1109/LMWC.2003.820639 Google Scholar
6. Singh, D., A. Kumar, S. Meena, and V. Agarwala, "Analysis of frequency selective surfaces for radar absorbing materials," Progress In Electromagnetics Research B, Vol. 38, 297-314, 2012. Google Scholar
7. Costa, F., S. Genovesi, and A. Monorchio, "A frequency selective absorbing ground plane for low RCS microstrip antenna arrays," Progress In Electromagnetics Research, Vol. 126, 317-332, 2012.
doi:10.2528/PIER12012904 Google Scholar
8. Oraizi, H., A. Abdolali, and N. Vaseghi, "Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section," Progress In Electromagnetics Research, Vol. 101, 323-337, 2010.
doi:10.2528/PIER10010603 Google Scholar
9. Engehta, N., "Thin absorbing screens using metamaterial surfaces," Digests IEEE AP-S/URSI Symp., 392-395, 2002. Google Scholar
10. Costa, F., A. Monorchio, and G. Manara, "Ultra-thin absorber by using high impedance surfaces with frequency selective surfaces," Digests IEEE AP-S Int. Symp., 861-864, 2007. Google Scholar
11. Mias, C. and J. H. Yap, "A varactor-tunable high impedance surface with a resistive-lumped-element biasing grid," IEEE Transactions on Antennas and Propagation, Vol. 55, 1955-1962, 2007.
doi:10.1109/TAP.2007.900228 Google Scholar
12. Alici, K. B., F. Bilotti, L. Vegni, and E. Ozbay, "Experimental verification of metamaterial based subwavelength microwave absorbers," J. . Appl. Phys, Vol. 108, 083113-1-083113-6, 2010.
doi:10.1063/1.3493736 Google Scholar
13. Costa, F. and A. Monorchio, "Multiband electromagnetic wave absorber based on reactive impedance ground planes," IET Microwaves, Antennas & Propagation, Vol. 4, 1720-1727, 2010.
doi:10.1049/iet-map.2009.0359 Google Scholar
14. Li, M.-H., H.-L. Yang, and X.-W. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409 Google Scholar
15. Zhu, , B., C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Dual band switchable metamaterial electromagnetic absorber," Progress In Electromagnetics Research B, Vol. 24, 121-129, 2010.
doi:10.2528/PIERB10070802 Google Scholar
16. Ohira, M., H. Deguchi, M. Tsuji, H. Shigesawa, "Multilband single layer frequency selective surface designed by combination of genetic algorithm and geometry-refinement technique," IEEE Transactions on Antennas and Propagation, Vol. 52, 2925-2931, 2004.
doi:10.1109/TAP.2004.835289 Google Scholar
17. Shen, , Z., B. Zheng, Z. Mei, J. Yang, W. Tang, "On the design of wide-band and thin absorbers using the multiple resonances concept," Digests International Conference on Microwave and Millimeter Wave Technology, 32-35, 2008. Google Scholar
18. Caloz, C. and T. Itoh, "Electromagnetic Metamaterials Transmission Line Theory and Microwave Applications," John Wiey & Sons, 2006. Google Scholar