1. Djajaputra, D., "Electrical impedance tomography: Methods, history and applications," Medical Physics, Vol. 32, No. 8, 2731-2731, 2005.
doi:10.1118/1.1995712 Google Scholar
2. Yu, Y., J. Jin, F. Liu, and S. Crozier, "Multidimensional compressed sensing MRI using tensor decomposition-based sparsifying transform," PLoS ONE, Vol. 9, No. 6, e98441, 2014.
doi:10.1371/journal.pone.0098441 Google Scholar
3. Fu, H.-S. and B. Han, "Tikhonov regularization-homotopy method for electrical impedance tomography," Journal of Natural Science of Heilongjiang University, Vol. 3, 319-323, 2011. Google Scholar
4. Wang, Q., H. Wang, R. Zhang, et al. "Image reconstruction based on L1 regularization and projection methods for electrical impedance tomography," Review of Scientific Instruments, Vol. 83, No. 10, 104707, 2012.
doi:10.1063/1.4760253 Google Scholar
5. Zhao, B., H. X. Wang, X. Y. Chen, X. L. Shi, and W. Q. Yang, "Linearized solution to electrical impedance tomography based on the Schur conjugate gradient method," Measurement Science and Technology, Vol. 18, No. 11, 3373-3383, 2007.
doi:10.1088/0957-0233/18/11/017 Google Scholar
6. Morucii, J., M. Granie, M. Lei, M. Chebett, and W. Dai, "Direct sensitivity matrix in electrical impedance imaging," International Conference of the IEEE Engineering in Medicine and Biology Society, 538-539, 1994. Google Scholar
7. Barber, D. C., "A sensitivity method for electrical impedance tomography," Clinicial Phyiscs and Physiological Measurement, Vol. 10, No. 4, 368-371, 1989.
doi:10.1088/0143-0815/10/4/011 Google Scholar
8. Semenov, S. Y., A. E. Bulyshev, A. E. Souvorov, et al. "Iterative algorithm for 3D EIT," Engineering in Medicine and Biology Society, 10, 1997. Google Scholar
9. Wang, M., "Inverse solutions for electrical impedance tomography based on conjugate gradients methods," Measurement Science and Technology, Vol. 13, 101-117, 2002.
doi:10.1088/0957-0233/13/1/314 Google Scholar
10. Borsic, A., et al., "In vivo impedance imaging with total variation regularization," IEEE Transactions on Medical Imaging, Vol. 29, No. 1, 44-53, 2010.
doi:10.1109/TMI.2009.2022540 Google Scholar
11. Lukaschewitsch, M., P. Maass, and M. Pidcock, "Tikhonov regularization for electrical impedance tomography on unbounded domains," Inverse Problems, Vol. 19, 585-610, 2003.
doi:10.1088/0266-5611/19/3/308 Google Scholar
12. Fan, W., H. Wang, et al. "An image reconstruction algorithm based on preconditioned LSQR for 3D EIT," IEEE International Instrumentation and Measurement Technology Conference, 10, 2011. Google Scholar
13. Jacobsen, M., P. C. Hansen, and M. A. Saunders, "Subspace preconditioned LSQR for discrete ill-posed problems," BIT Numerical Mathematics, Vol. 43, 975-989, 2003.
doi:10.1023/B:BITN.0000014547.88978.05 Google Scholar
14. Wang, H. X., L. Tang, and Y. Yan, "Total variation regularization algorithm for electrical capacitance tomography," Chinese Journal of Scientific Instrument, Vol. 28, No. 11, 2014-2018, 2007. Google Scholar
15. Chambelle, A., et al., "An algorithm for total variation minimization and applications," Journal of Mathematical Imaging and Vision, Vol. 20, 89-97, 2004. Google Scholar
16. Yang, Y., H. Wu, et al. "Image reconstruction for electrical impedance tomography using enhanced adaptive group sparsity with total variation," IEEE Sensors Journal, Vol. 17, No. 17, 5589-5598, 2017.
doi:10.1109/JSEN.2017.2728179 Google Scholar
17. Hemming, B., A. Fagerlund, and A. Lassila, "Linearized solution to electrical impedance tomography based on the schur conjugate gradient method," Measurement Science & Technology, Vol. 18, No. 11, 3373, 2007.
doi:10.1088/0957-0233/18/11/017 Google Scholar
18. Li, X., X. Chen, et al. "Electrical-impedance-tomography imaging based on a new three-dimensional thorax model for assessing the extent of lung injury," AIP Advances, Vol. 10, 9000000, 2019. Google Scholar
19. Kolda, T. and B. Bader, "Tensor decompositions and applications," SIAM Rev., Vol. 51, No. 3, 455-500, 2009.
doi:10.1137/07070111X Google Scholar
20. De Lathauwer, L., B. De Moor, and J. Vandewalle, "A multilinear singular value decomposition," SIAM J. Matrix Anal. Appl., Vol. 21, 1253-1278, 2000.
doi:10.1137/S0895479896305696 Google Scholar
21. Wang, Q., P. Zhang, et al. "Patch-based sparse reconstruction for electrical impedance tomography," Sensor Review, Vol. 37, No. 3, 257-269, 2017.
doi:10.1108/SR-07-2016-0126 Google Scholar
22. Caiafa, C. F. and A. Cichocki, "Fast and stable recovery of approximatelly low multilinear rank tensors from multi-way compressive measurements," IEEE Int. Conf. Acoust. Speech, Signal., 6790-6794, 2014. Google Scholar
23. Caiafa, C. F. and A. Cichocki, "Multidimensional compressed sensing and their applications," Wiley Interdisciplinary Rev.: Data Mining Knowledge Discovery, Vol. 3, No. 6, 355-380, 2013.
doi:10.1002/widm.1108 Google Scholar
24. Hansen, P. C., "Rank-deficient and discrete Ill-posed problems," American Mathematical Monthly, Vol. 10, No. 3, 215-247, 1998. Google Scholar
25. Caiafa, C. F. and A. Cichocki, "Stable, robust, and super fast reconstruction of tensors using multi-way projections," IEEE Transactions on Signal Processing, Vol. 63, No. 3, 780-793, 2015.
doi:10.1109/TSP.2014.2385040 Google Scholar
26. Schullcke, B., Z. S. Krueger, and B. Gong, "Ventilation inhomogeneity in obstructive lung diseases measured by electrical impedance tomography: A simulation study," J. Clin. Monit. Comput., Vol. 32, No. 4, 753-761, 2018.
doi:10.1007/s10877-017-0069-0 Google Scholar
27. Schullcke, B., Z. S. Krueger, and B. Gong, "A simulation study on the ventilation inhomogeneity measured with electrical impedance tomography," IFAC Papers on Line, Vol. 50, 8781-8785, 2017.
doi:10.1016/j.ifacol.2017.08.1737 Google Scholar
28. Wang, Q., H. X. Wang, et al. "Image reconstruction based on L1 regularization and projection methods for electrical impedance tomography," Review of Scientific Instruments, Vol. 83, No. 10, 104707, 2012.
doi:10.1063/1.4760253 Google Scholar