1. Klemm, M. and G. Troester, "EM energy absorption in the human body tissues due to UWB antennas," Progress In Electromagnetics Research, Vol. 62, 261-280, 2006.
doi:10.2528/PIER06040601 Google Scholar
2. Hirata, A., T. Asano, and O. Fujiwara, "FDTD analysis of human body-core temperature elevation due to RF far-¯eld energy prescribed in the ICNIRP guidelines," Phys. Med. Biol., Vol. 52, No. 16, 5013-5023, Aug. 21, 2007.
doi:10.1088/0031-9155/52/16/020 Google Scholar
3. Foster, K. R., M. C. Ziskin, and Q. Balzano, "Thermal response of human skin to microwave energy: A critical review," Health Phys., Vol. 111, No. 6, 528-541, Dec. 2016.
doi:10.1097/HP.0000000000000571 Google Scholar
4. Rotman, R., "Recent advances using microwaves for imaging, hyperthermia and interstitial ablation of breast cancer tumors," Proc. IEEE Int. Conf. Microw. Commun. Antennas Electron. Syst. (COMCAS), 1-4, Tel Aviv, Israel, Nov. 7-9, 2011. Google Scholar
5. Vrbova, B. and J. Vrba, "Microwave thermotherapy in cancer treatment: Evaluation of homogeneity of SAR distribution," Progress In Electromagnetics Research, Vol. 129, 181-195, 2012.
doi:10.2528/PIER12032304 Google Scholar
6. Nguyen, P. T., A. Abbosh, and C. Crozier, "Three-dimensional microwave hyperthermia for breast cancer treatment in a realistic environment using particle swarm optimization," IEEE Trans. Biomed. Eng., Vol. 64, No. 6, 1335-1344, Jun. 2017.
doi:10.1109/TBME.2016.2602233 Google Scholar
7. Kim, T.-H. and J.-K. Pack, "Measurement of electrical characteristics of female breast tissues for the development of the breast cancer detector," Progress In Electromagnetics Research C, Vol. 30, 189-199, 2012.
doi:10.2528/PIERC12050704 Google Scholar
8. Fiser, O., M. Helbig, J. Sachs, S. Ley, I. Merunka, and J. Vrba, "Microwave non-invasive temperature monitoring using UWB radar for cancer treatment by hyperthermia," Progress In Electromagnetics Research, Vol. 162, 1-14, 2018.
doi:10.2528/PIER17111609 Google Scholar
9. Yilmaz, T., R. Foster, and Y. Hao, "Radio-frequency and microwave techniques for non-invasive measurement of blood glucose levels," Diagnostics (Basel), Vol. 9, No. 1, Article No. 6, 1-34, Jan. 8, 2019. Google Scholar
10. Chandrasekaran, S., S. Ramanathan, and T. Basak, "Microwave food processing - A review," Food Res. Int., Vol. 52, No. 1, 243-261, Jun. 2013.
doi:10.1016/j.foodres.2013.02.033 Google Scholar
11. Keshavarz, R., M. Danaeian, M. Movahhedi, and A. Hakimi, "A compact dual-band branch-line coupler based on the interdigital transmission line," 19th Iranian Conf. Electr. Eng., 1-5, Tehran, Iran, May 17-19, 2011. Google Scholar
12. Keshavarz, R., Y. Miyanaga, M. Yamamoto, T. Hikage, and N. Shariati, "Metamaterial-inspired quad-band notch filter for LTE band receivers and WPT applications," 33rd GA & Sci. Symp. Int. Union Rad. Sci., 1-4, Rome, Italy, Aug. 29-Sep. 5, 2020. Google Scholar
13. Keshavarz, R. and N. Shariati, "Low profile metamaterial band-pass filter loaded with 4-turn complementary spiral resonator for WPT applications," 27th IEEE Int. Conf. Electron., Circ. Syst. (ICECS), 1-4, Glasgow, UK, Nov. 23-25, 2020. Google Scholar
14. Keshavarz, S., R. Keshavarz, and A. Abdipour, "Compact active duplexer based on CSRR and interdigital loaded microstrip coupled lines for LTE application," Progress In Electromagnetics Research C, Vol. 109, 27-37, (B. 39, F. 4), 789-839, 2021. Google Scholar
15. Debye, P., "Zur Theorie der spezifischen Wärmen," Ann. Phys., Vol. 344, No. 14, 1912.
doi:10.1002/andp.19123441404 Google Scholar
16. Cole, K. S. and R. H. Cole, "Dispersion and absorption in dielectrics. I. Alternating current characteristics," J. Chem. Phys., Vol. 9, No. 4, 341-351, Apr. 1941.
doi:10.1063/1.1750906 Google Scholar
17. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, No. 11, 2271-2293, Nov. 1996.
doi:10.1088/0031-9155/41/11/003 Google Scholar
18. Krewer, F., F. Morgan, and M. O'Halloran, "Development of accurate multi-pole Debye functions for electromagnetic tissue modelling using a genetic algorithm," Progress In Electromagnetics Research Letters, Vol. 43, 137-147, 2013.
doi:10.2528/PIERL13091107 Google Scholar
19. Salahuddin, S., E. Porter, F. Krewer, and M. O'Halloran, "Optimized analytical models of the dielectric properties of biological tissue," Med. Eng. Phys., Vol. 43, 103-111, May 2017.
doi:10.1016/j.medengphy.2017.01.017 Google Scholar
20. Trujillo, M. and E. Berjano, "Review of the mathematical functions used to model the temperature dependence of electrical and thermal conductivities of biological tissue in radiofrequency ablation," Int. J. Hypertherm., Vol. 29, No. 6, 590-597, 2013.
doi:10.3109/02656736.2013.807438 Google Scholar
21. Rossmann, C. and D. Haemmerich, "Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablasion temperatures," Crit. Rev. Biomed. Eng., Vol. 42, No. 6, 467-492, 2014.
doi:10.1615/CritRevBiomedEng.2015012486 Google Scholar
22. Jaspard, F. and M. Nadi, "Dielectric properties of blood: An investigation of temperature dependence," Physiol. Meas., Vol. 23, No. 3, 547-554, Jul. 2002.
doi:10.1088/0967-3334/23/3/306 Google Scholar
23. Wolf, M., R. Gulich, P. Lunkenheimer, and A. Loidl, "A broadband dielectric spectroscopy on human blood," Biochim. Biophys. Acta Gen. Subj., Vol. 1810, No. 8, 727-740, Aug. 2011.
doi:10.1016/j.bbagen.2011.05.012 Google Scholar
24. Lazebnik, M., M. C. Converse, J. H. Booske, and S. C. Hagness, "Ultrawideband temperature-dependent dielectric properties of animal liver tissue in the microwave frequency range," Phys. Med. Biol., Vol. 51, No. 7, 1941-1955, Apr. 7, 2006.
doi:10.1088/0031-9155/51/7/022 Google Scholar
25. Ley, S., S. Shilling, O. Fiser, J. Vrba, J. Sachs, and M. Helbig, "Ultra-wideband temperature dependent dielectric spectroscopy of porcine tissue and blood in the microwave frequency range," Sensors (Basel), Vol. 19, No. 7, Article No. 1707, 1-21, 2019. Google Scholar
26. Mason, J. C. and D. C. Handscomb, Chebyshev Polynomials, Chapman & Hall/CRC, 2003.
27. Mason, J. C., "Near-best multivariate approximation by Fourier series, Chebyshev series and Chebyshev interpolation," J. Approx. Theory, Vol. 28, No. 4, 349-358, Apr. 1980.
doi:10.1016/0021-9045(80)90069-6 Google Scholar
28. Trefethen, L. N., "Multivariate polynomial approximation in the hypercube," Proc. Amer. Math. Soc., Vol. 145, No. 11, 4837-4844, Nov. 2017.
doi:10.1090/proc/13623 Google Scholar
29. Taflove, A., Computational Electrodynamics. The Finite-Difference Time-Domain Method, Artech House, 1995.
30. McGarr, G. W., "Influence of upper limb ischaemia-reperfusion injury on the regulation of cutaneous blood flow during local hyparaemia,", PhD diss., Brock Univ., St. Catharines, ON, Canada, 2017. Google Scholar
31. Sekins, K. M., J. F. Lehmann, P. Esselmann, D. Dundore, A. F. Emery, B. J. de Lateur, and W. B. Nelp, "Local muscle blood flow and temperature responses to 915 MHz diathermy as simultaneously measured and numerically predicted," Arch. Phys. Med. Rehabil., Vol. 65, No. 1, 1-7, Jan. 1984. Google Scholar
32. Sihvola, A., "Mixing rules with complex dielectric coefficients," Subsurf. Sens. Tech. App., Vol. 1, No. 4, 393-415, 2000.
doi:10.1023/A:1026511515005 Google Scholar
33. Porter, E., A. L. Gioia, A. Santorelli, and M. O'Halloran, "Modeling of the dielectric properties of biological tissues within the histology region," IEEE Trans. Dielectr. Electr. Insul., Vol. 24, No. 5, 3290-3301, Oct. 2017.
doi:10.1109/TDEI.2017.006690 Google Scholar
34. Markushevich, A. I., Theory of Functions of a Complex Variable, Vol. 1, Transl. R. A. Silverman, Prentice-Hall, Englewood Cliffs, 1965.