Vol. 138
Latest Volume
All Volumes
2023-09-30
Multiband Patch Antenna with Sinc-Shaped Edges for Sub-6 GHz Applications
By
Progress In Electromagnetics Research C, Vol. 138, 51-63, 2023
Abstract
In this paper, several multiband patch antennas with sinc-shaped edges were analyzed, designed, simulated and implemented for modern sub-6 GHz applications. The aim is to use the sinc function parameters such as amplitude and number of maxima (frequency) to control the antenna performance such as resonance and radiation characteristics. It is shown that changing the sinc pattern parameters has a significant impact on the resonance of the antenna, and hence these parameters can be used to directly control the multiband behavior of the antenna. The proposed antenna designs were manufactured, and their performance was tested experimentally in the lab and compared to simulation results. An acceptable agreement between experimental and simulated results was achieved.
Citation
Qusai Hadi Sultan, Ahmed M. A. Sabaawi, Bariq M. Abawi, and Saad W. O. Luhaib, "Multiband Patch Antenna with Sinc-Shaped Edges for Sub-6 GHz Applications," Progress In Electromagnetics Research C, Vol. 138, 51-63, 2023.
doi:10.2528/PIERC23080105
References

1. Patel, D. H. and G. D. Makwana, "A comprehensive review on multi-band microstrip patch antenna comprising 5G wireless communication," International Journal of Computing and Digital System, 941-953, 2021.

2. Hussain, W., M. I. Khattak, M. A. Khattak, and M. Anab, "Multiband microstrip patch antenna for 5g wireless communication," International Journal of Engineering Works, Vol. 1, No. 01, 15-21, 2020.
doi:10.34259/ijew.20.7011521

3. Milias, C., R. B. Andersen, P. I. Lazaridis, Z. D. Zaharis, B. Muhammad, J. T. B. Kristensen, A. Mihovska, and D. D. S. Hermanse, "Metamaterial-inspired antennas: A review of the state of the art and future design challenges," IEEE Access, Vol. 9, 89846-89865, 2021.
doi:10.1109/ACCESS.2021.3091479

4. Wang, Z., Y. Ning, and Y. Dong, "Hybrid metamaterial-TL-based, low-profile, dual-polarized omnidirectional antenna for 5G indoor application," IEEE Transactions on Antennas and Propagation, Vol. 70, No. 4, 2561-2570, 2021.
doi:10.1109/TAP.2021.3137242

5. Reis, J. R., M. Vala, T. E. Oliveira, T. R. Fernandes, and R. F. S. Caldeirinha, "Metamaterial-inspired flat beamsteering antenna for 5G base stations at 3.6 GHz," Sensors, Vol. 21, No. 23, 8116, 2021.
doi:10.3390/s21238116

6. Murthy, N., "Improved isolation metamaterial inspired mm-Wave MIMO dielectric resonator antenna for 5G application," Progress In Electromagnetics Research C, Vol. 100, 247-261, 2020.
doi:10.2528/PIERC19112603

7. Saleem, R., M. Bilal, H. T. Chattha, S. Ur Rehman, A. Mushtaq, and M. F. Shafique, "An FSS based multiband MIMO system incorporating 3D antennas for WLAN/WiMAX/5G cellular and 5G Wi-Fi applications," IEEE Access, Vol. 7, 144732-144740, 2019.
doi:10.1109/ACCESS.2019.2945810

8. Nakmouche, M. F., A. M. Allam, D. E. Fawzy, and D.-B. Lin, "Development of a high gain FSS reflector backed monopole antenna using machine learning for 5G applications," Progress In Electromagnetics Research M, Vol. 105, 183-194, 2021.
doi:10.2528/PIERM21083103

9. Kumar, A., A. De, and R. K. Jain, "Gain enhancement using modified circular loop FSS loaded with slot antenna for sub-6 GHz 5G application," Progress In Electromagnetics Research Letters, Vol. 98, 41-48, 2021.
doi:10.2528/PIERL21031108

10. Ramahatla, K., M. Mosalaosi, A. Yahya, and B. Basutli, "Multiband reconfigurable antennas for 5G wireless and CubeSat applications: A review," IEEE Access, Vol. 10, 40910-40931, 2022.
doi:10.1109/ACCESS.2022.3166223

11. Mukherjee, K., S. Mukhopadhyay, and S. Roy, "Design of wideband planar antenna with inverted I-shaped tuning stubs for application in 5G, satellite communication, and Internet of Things," International Journal of Communication Systems, Vol. 35, No. 11, e5191, 2022.
doi:10.1002/dac.5191

12. Alhamad, R., E. Almajali, and S. Mahmoud, "Electrical reconfigurability in modern 4g, 4g/5g and 5g antennas: A critical review of polarization and frequency reconfigurable designs," IEEE Access, Vol. 11, 29215-29233, 2023.
doi:10.1109/ACCESS.2023.3260073

13. Asif, S. M., M. R. Anbiyaei, K. L. Ford, T. O'Farrell, and R. J. Langley, "Low-profile independently-and concurrently-tunable quad-band antenna for single chain sub-6 GHz 5G new radio applications," IEEE Access, Vol. 7, 183770-183782, 2019.
doi:10.1109/ACCESS.2019.2960096

14. Sabaawi, A. M. A., K. S. Muttair, O. A. Al-Ani, and Q. H. Sultan, "Dual-band MIMO antenna with defected ground structure for sub-6 GHz 5G applications," Progress In Electromagnetics Research C, Vol. 122, 57-66, 2022.
doi:10.2528/PIERC22050703

15. Senger, S. and P. K. Malik, "A comprehensive survey of massive-MIMO based on 5G antennas," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 32, No. 12, e23496, 2022.
doi:10.1002/mmce.23496

16. Pant, M. and L. Malviya, "Design, developments, and applications of 5G antennas: A review," International Journal of Microwave and Wireless Technologies, 1-27, 2022.

17. Jiang, W., Y. Cui, B. Liu, W. Hu, and Y. Xi, "A dual-band MIMO antenna with enhanced isolation for 5G smartphone applications," IEEE Access, Vol. 7, 112554-112563, 2019.
doi:10.1109/ACCESS.2019.2934892

18. Sabaawi, A. M. A., Q. H. Sultan, and T. A. Najm, "Design and implementation of multi-band fractal slot antennas for energy harvesting applications," Periodica Polytechnica Electrical Engineering and Computer Science, Vol. 66, No. 3, 253-264, 2022.
doi:10.3311/PPee.20301