PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 32 > pp. 271-299

HIGHER ORDER WHITNEY FORMS

By R. Hiptmair

Full Article PDF (402 KB)

Abstract:
The calculus of differential forms can be used to devise a unified description of discrete differential forms of any order and polynomial degree on simplicial meshes in any spatial dimension. A general formula for suitable degrees of freedom is also available. Fundamental properties of nodal interpolation can be established easily. It turns out that higher order spaces, including variants with locally varying polynomial order, emerge from the usual Whitneyforms by local augmentation. This paves the way for an adaptive pversion approach to discrete differential forms.

Citation: (See works that cites this article)
R. Hiptmair, "Higher Order Whitney Forms," Progress In Electromagnetics Research, Vol. 32, 271-299, 2001.
doi:10.2528/PIER00080111
http://www.jpier.org/PIER/pier.php?paper=00080111

References:
1. Andersen, L. and J. Volakis, "Development and application of a novel class of hierarchical tangential vector finite elements for electromagnetics," IEEE Trans. Antennas and Propagation, Vol. 47, 112-120, 1999.
doi:10.1109/8.753001

2. Babuska, I., M. Griebel, and J. Pitkaranta, "The problem of selecting the shape functions for a p-type finite element," Int. J. Num. Meth. Engin., Vol. 28, 1891-1908, 1988.
doi:10.1002/nme.1620280813

3. Baldomir, D. and P. Hammond, Geometry of Electromagnetic Systems, Clarendon Press, Oxford, 1996.

4. Beck, R., R. Hiptmair, and B. Wohlmuth, "A hierarchical error estimator for eddy current computation," ENUMATH 99 — Proceedings of the 3rd European Conference on Numerical Mathematics and Advanced Applications, P. Neittaanmaki and T. Tiihonen (eds.), July 26–30, Jyvskyl, Finland, 110–120, World Scientific, Singapore, 2000.

5. Boffi, D., "Discrete compactness and Fortin operator for edge elements," Tech. Rep. AM187, Department of Mathematics, Pennsylvania State University, State College, USA, April 1999. To appear in Numerische Mathematik.

6. Bossavit, A., "Mixed finite elements and the complex of Whitney forms," The Mathematics of Finite Elements and Applications VI, J. Whiteman (ed.), 137–144, Academic Press, London, 1988.

7. Bossavit, A., "Whitney forms: A class of finite elements for threedimensional computations in electromagnetism," IEE Proc. A, Vol. 135, 493-500, 1988.
doi:10.1049/ip-d.1988.0075

8. Bossavit, A., "On the geometry of electromagnetism IV: “Maxwell’s house," J. Japan Soc. Appl. Electromagnetics & Mech., Vol. 6, 318-326, 1998.

9. Brenner, S. and R. Scott, Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, Springer-Verlag, New York, 1994.
doi:10.1007/978-1-4757-4338-8

10. Caorsi, S., P. Fernandes, and M. Raffetto, "On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems," SIAM J. Numer. Anal., To appear.

11. Cartan, H., Formes Differentielles, Hermann, Paris, 1967.

12. Ciarlet, P., "The finite element method for elliptic problems," Studies in Mathematics and its Applications, Vol. 4, North-Holland, Amsterdam, 1978.

13. Demkowicz, L., P. Monk, L. Vardapetyan, and W. Rachowicz, "De Rham diagram for hp finite element spaces," Tech. Rep., 99-06, TICAM, University of Texas, Austin, TX, 1999.

14. Deschamps, G., "Electromagnetics and differential forms," Proc. IEEE, Vol. 69, 676-695, 1981.
doi:10.1109/PROC.1981.12048

15. Elmkies, A. and P. Joly, "Elements finis et condensation de masse pour les equations des Maxwell: le cas 3D," Tech. Rep., 3381, INRIA, Roucquencourt, Domaine de Voluveau, France, May 1998.

16. Graglia, R., D. Wilton, and A. Peterson, "Higher order interpolatory vector bases for computational electromagnetics," IEEE Trans. Antennas and Propagation, Vol. 45, 329-342, 1997.
doi:10.1109/8.558649

17. Graglia, R., D. Wilton, A. Peterson, and I.-L. Gheorma, "Higher order interpolatory vector bases on prism elements," IEEE Trans. Antennas and Propagation, Vol. 46, 442-450, 1998.
doi:10.1109/8.662664

18. Hiptmair, R., "Canonical construction of finite elements," Math. Comp., Vol. 68, 1325-1346, 1999.
doi:10.1090/S0025-5718-99-01166-7

19. Iwaniec, T., "Nonlinear differential forms,” “Lectures notes of the International Summer School in Jyvaskyla,", 1998 80, University of Jyvaskyla, Department of Mathematics, Jyvaskyla, Finland, 1999.

20. Monk, P., "On the p and hp-extension of Nedelec’s conforming elements," J. Comp. Appl. Math., Vol. 53, 117-137, 1994.
doi:10.1016/0377-0427(92)00127-U

21. Monk, P. and L. Demkowicz, "Discrete compactness and the approximation of Maxwell’s equations in R3," Math. Comp., 1999, to appear.
doi:10.1016/0377-0427(92)00127-U

22. Nedelec, J., "Mixed finite elements in R3," Numer. Math., Vol. 35, 315-341, 1980.
doi:10.1007/BF01396415

23. Nedelec, J., "A new family of mixed finite elements in R3," Numer. Math., Vol. 50, 57-81, 1986.
doi:10.1007/BF01389668

24. Peng, G., R. Dyczij-Edlinger, and J.-F. Lee, "Hierarchical methods for solving matrix equations from TVFEMs for microwave components," IEEE Trans. Mag., Vol. 35, 1474-1477, 1998.
doi:10.1109/20.767245

25. Raviart, P. A. and J. M. Thomas, "A mixed finite element method for second order elliptic problems," Springer Lecture Notes in Mathematics, Vol. 606, 292-315, Springer-Verlag, New York, 1977.
doi:10.1007/BFb0064470

26. Savage, J. and A. Peterson, "Higher order vector finite elements for tetrahedral cells," IEEE Trans. Microwave Theory and Techniques, Vol. 44, 874-879, 1996.
doi:10.1109/22.506446

27. Whitney, H., Geometric Integration Theory, Princeton Univ. Press, Princeton, 1957.
doi:10.1515/9781400877577

28. Yiailtsis, T. and T. Tsiboukis, "A systematic approach to the construction of higher order vector finite elements for three-dimensional electromagnetic field computation," COMPEL, Vol. 14, 49-53, 1995.
doi:10.1108/eb051912


© Copyright 2014 EMW Publishing. All Rights Reserved