Vol. 41

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Dispersion Diagrams of Bloch Modes Applied to the Design of Directive Sources

By
Progress In Electromagnetics Research, Vol. 41, 61-81, 2003
doi:10.2528/PIER02010803

Abstract

We present an original study which makes use of a convenient representation of the dispersion diagrams of Bloch modes for the design of angular selective sources. These diagrams provide us all the pertinent information about the radiative properties of the photonic crystal, and a guideline to optimize the structure in order to obtain the suitable properties. We apply these tools in two cases: when the radiated field propagates normally to the device, and also for an off-axis radiating device. Several numerical examples obtained from a rigorous numerical method show the relevance of this approach.

Citation

 (See works that cites this article)
, "Dispersion Diagrams of Bloch Modes Applied to the Design of Directive Sources," Progress In Electromagnetics Research, Vol. 41, 61-81, 2003.
doi:10.2528/PIER02010803
http://www.jpier.org/PIER/pier.php?paper=0201083

References


    1. Yang, H. Y. D., N. G. Alexopoulos, and E. Yablonovitch, "Photonic band-gap materials for high-gain printed circuit antennas," IEEE Trans. on Antennas and Propagat., Vol. 45, 185-187, 1997.
    doi:10.1109/8.554261

    2. Sigalas, M. M., R. Biswas, Q. Li, D. Crouch, W. Leung, R. Jacobs- Woodbury, B. Lough, S. Nielsen, S. McCalmont, G. Tuttle, and K. M. Ho, "Dipole antennas on photonic band-gap crystals- Experiment and simulation," Microwave and Optical Technology Letters, Vol. 15, 153-158, 1997.
    doi:10.1002/(SICI)1098-2760(19970620)15:3<153::AID-MOP10>3.0.CO;2-8

    3. Leung, W. Y., R. Biswas, S. D. Cheng, M. M. Sigalas, J. S. McCalmont, G. Tuttle, and K. M. Ho, "Slot antennas on photonic band gap crystals," IEEE Trans. on Antennas and Propagat., Vol. 45, 1569-1570, 1997.
    doi:10.1109/8.633871

    4. Smith, G. S., M. P. Kesler, and J. G. Maloney, "Dipole antennas used with all-dielectric, woodpile photonic-bandgap reflectors: gain, field pattern, and input impedance," Microwave and Optical Technology Letters, Vol. 21, 191-196, 1999.
    doi:10.1002/(SICI)1098-2760(19990505)21:3<191::AID-MOP10>3.0.CO;2-L

    5. Sievenpiper, D., L. Zhang, R. F. Jimenez Broas, N. G. Alexopoulos, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2059-2074, 1999.
    doi:10.1109/22.798001

    6. Gonzalo, R., P. de Maagt, and M. Sorolla, "Enhanced patch antenna performance by suppressing surface waves using photonicbandgap substrates," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2131-2138, 1999.
    doi:10.1109/22.798009

    7. Gonzalo, R., B. Martinez, P. de Maagt, and M. Sorolla, "Improved patch-antenna performance by using photonic-bandgap substrates," Microwave and Optical Technology Letters, Vol. 24, 213-215, 2000.
    doi:10.1002/(SICI)1098-2760(20000220)24:4<213::AID-MOP1>3.0.CO;2-2

    8. Thevenot, M., C. Cheype, A. Reinex, and B. Jecko, "Directive photonic-bandgap antennas," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2115-2122, 1999.
    doi:10.1109/22.798007

    9. Temelkuran, B., M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, "Photonic crystal-based resonant antenna with a very high directivity," Journal of Applied Physics, Vol. 87, 603-605, 2000.
    doi:10.1063/1.371905

    10. Ho, K. M., C. T. Chan, and C. M. Soukoulis, "Existence of photonic gap in periodic dielectric structures," Phys. Rev. Lett., Vol. 65, 3152-3155, 1990.
    doi:10.1103/PhysRevLett.65.3152

    11. Plihal, M. and A. A. Maradudin, "Photonic band structure of two-dimensional systems: the triangular lattice," Phys. Rev. B, Vol. 44, 8565-8571, 1991.
    doi:10.1103/PhysRevB.44.8565

    12. Sözuer, H. S., J. W. Haus, and R. Inguva, "Photonic bands: convergence problems with the plane-wave method," Phys. Rev. B, Vol. 45, 13962-13972, 1992.
    doi:10.1103/PhysRevB.45.13962

    13. Joannopoulos, J., R. Meade, and J. Winn, Photonic Crystals, Princeton University Press, 1995.

    14. Meade, R. D., A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B, Vol. 55, 15942-8437, 1997.
    doi:10.1103/PhysRevB.55.15942

    15. Moroz, A. and C. Sommers, "Photonic band gaps of threedimensional face-centered cubic lattices," J. Phys.: Condens. Matter, Vol. 11, 997-1008, 1999.
    doi:10.1088/0953-8984/11/4/007

    16. Botten, L. C., N. A. Nicorovici, R. C. McPhedran, C.M. de Sterke, and A. A. Asatryan, "Photonic band structure calculations using scattering matrices," Phys. Rev. E, Vol. 64, 2001.
    doi:10.1103/PhysRevE.64.046603

    17. Botten, L. C., R. C. McPhedran, N. A. Nicorovici, A. A. Asatryan, C. M. de Sterke, P. A. Robinson, K. Busch, G. H. Smith, and T. N. Langtry, "Rayleigh multipole methods for photonic crystal calculations," Progress In Electromagnetics Research, Vol. 41, 21-60.
    doi:10.2528/PIER02010802

    18. Tayeb, G. and D. Maystre, "Rigorous theoretical study of finite size two-dimensional photonic crystals doped by microcavities," J. Opt. Soc. Am. A, Vol. 14, 3323-3332, 1997.

    19. Yeh, P., "Electromagnetic propagation in birefringent layered media," J. Opt. Soc. Am., Vol. 69, 742-756, 1979.

    20. Gralak, B., S. Enoch, and G. Tayeb, "Anomalous refractive properties of photonic crystals," J. Opt. Soc. Am. A, Vol. 17, 1012-1020, 2000.

    21. Petit, R. (Ed.), Electromagnetic Theory of Gratings, Springer- Verlag, 1980.

    22. Villeneuve, P., S. Fan, and J. D. Joannopoulos, "Microcavities in photonic crystals: mode symmetry, tunability, and coupling efficiency," Phys. Rev. B, Vol. 54, 7837-7842, 1996.
    doi:10.1103/PhysRevB.54.7837

    23. Sentenac, A., J. J. Greffet, and F. Pincemin, "Structure of the electromagnetic field in a slab of photonic crystal," J. Opt. Soc. Am. B, Vol. 14, 339-347, 1997.

    24. Yuan, Z., J. W. Haus, and K. Sakoda, "Eigenmode symmetry for simple cubic lattices and the transmission spectra," Optics Express, Vol. 3, 19-27, 1998.

    25. Hall, R. C., R. Mittra, and K. M. Mitzner, "Analysis of multilayered periodic structures using generalized scattering matrix theory," IEEE Trans. Ant. Prop., Vol. 36, 511-517, 1988.
    doi:10.1109/8.1140

    26. Neviere, M. and F. Montiel, "Deep gratings: a combination of the differential theory and the multiple reflection series," Optics Comm., Vol. 108, 1-7, 1994.
    doi:10.1016/0030-4018(94)90206-2

    27. Montiel, F. and M. Neviere, "Differential theory of gratings: extension to deep gratings of arbitrary profile and permittivity through the R-matrix propagation algorithm," J. Opt. Soc. Am. A, Vol. 11, 3241-3250, 1994.

    28. Li, L., "Bremmer series, R-matrix propagation algorithm, and numerical modeling of diffraction gratings," J. Opt. Soc. Am. A, Vol. 11, 2829-2836, 1994.

    29. Li, L., "Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings," J. Opt. Soc. Am. A, Vol. 13, 1024-1035, 1996.

    30. Felbacq, D., G. Tayeb, and D. Maystre, "Scattering by a random set of parallel cylinders," J. Opt. Soc. Am. A, Vol. 11, 2526-2538, 1994.