Vol. 41

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Three Dimensional Photonic Crystals in the Visible Regime

By
Progress In Electromagnetics Research, Vol. 41, 307-335, 2003
doi:10.2528/PIER02010894

Abstract

3-dimensional photonic bandgap structures working in the visible have been given increasing attention in recent years encouraged by the possibility to control, modify or confine electromagnetic waves in all three dimensions, since this could have considerable impact on novel passive and active optical devices and systems. Although substantial progress has been made in the fabrication of 3D Photonic crystals by means of nano-lithography and nanotechnology, it still remains a challenge to fabricate these crystals with feature sizes of the half of the wavelength in the visible. Self-assembling of colloidal particles is an alternative method to prepare 3-dimensional photonic crystals. The aim of this article is to show how to use colloidal crystals as templates for photonic crystals and how to monitor the changes of their optical properties due course of the modification.

Citation

 (See works that cites this article)
, "Three Dimensional Photonic Crystals in the Visible Regime," Progress In Electromagnetics Research, Vol. 41, 307-335, 2003.
doi:10.2528/PIER02010894
http://www.jpier.org/PIER/pier.php?paper=02010894

References


    1. Bykov, V. P., "Spontaneous emission in a periodic structure," Sov. Phys. JETP, Vol. 35, 1972.

    2. Yablonovich, E., "Inhibited spontaneous emission in solid-state physics and electronics,'' Phys. Rev. Lett., Vol. 58, 2059, 1987. John, S., Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 1987.

    3. Noda, S., N. Yamamoto, M. Imrada, H. Kobayashi, and M. Okato, "Alignment and stacking of semiconductor photonic bandgaps by wafer-fusion," J. Lightwave Technol., Vol. 17, 1999.
    doi:10.1109/50.802979

    4. Cuisin, C., A. Chelnokov, J. M. Lourtioz, D. Decanini, and Y. Chen, "Fabrication of three-dimensional photonic structures with submicrometer resolution by x-ray lithography," J. Vac. Sci. Technol. B, Vol. 18, 2000.
    doi:10.1116/1.1319825

    5. Wang, K., A. Chelnokov, S. Rowson, P. Garoche, and J. M. Lourtioz, "Focused-ion-beam etching in macroporous silicon to realize three-dimensional photonic crystals," J. Phys. D: Appl. Phys., Vol. 33, 2000.

    6. Lin, S. Y. and J. G. Fleming, "A three dimensional optical photonic crystal," J. Lightwave Technol., Vol. 17, 2000.

    7. Champbell, M., D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature, Vol. 404, 2000.

    8. Kuramochi, E., M. Notomi, T. Tamamura, T. Kawashima, S. Kawakami, J. Takahashi, and C. Takahashi, "Drilled alternating-layer structure for three-dimensional photonic crystals with a full band gap," J. Vac. Sci. Technol. B, Vol. 18, 2000.

    9. Stöber, W., A. Fink, and E. Bohn, "Controlled growth of monodisperse silica spheres in the micron size range," J. Colloid. Interface Sci., Vol. 26, 1968.

    10. Míguez, H., F. Meseguer, C. L´opez, A. Mifsud, J. S. Moya, and L. Vaazquez, "Evidence of fcc crystallization of SiO2 nanospheres," Langmuir, Vol. 13, 1997.

    11. Holgado, M., F. García-Santamaría, A. Blanco, M. Ibisate, A. Cintas, H. Míguez, C. J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer, and C. L´opez, "Electrophoretic deposition to control artificial opal growth," Langmuir, Vol. 15, 1999.
    doi:10.1021/la990161k

    12. Vlasov, Yu. A., V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, O. Z. Karimov, and M. F. Limonov, "Manifestation of intrinsic defects in optical properties of self-organized opal photonic crystals," Phys. Rev. E, Vol. 61, 2000.

    13. Xia, Y., B. Gates, Y. Yin, and Y. Lu, "Monodispersed colloidal spheres: old Materials with new applications," Adv. Mat., Vol. 12, 2000.
    doi:10.1002/(SICI)1521-4095(200005)12:10<693::AID-ADMA693>3.0.CO;2-J

    14. Rogach, A., A. Susha, F. Caruso, G. Sukhorukov, A. Kornowski, S. Kershaw, H. Möhwald, A. Eychmuller, and H. Weller, "Nano-and microengineering: 3-D colloidal photonic crystals prepared from sub-μm-sized polystyrene latex spheres pre-coated with luminescent polyelectrolyte/nanocrystal shells," Adv. Mat., Vol. 12, 3, 2000.
    doi:10.1002/(SICI)1521-4095(200003)12:5<333::AID-ADMA333>3.0.CO;2-X

    15. Astratov, V. N., V. N. Bogomolov, A. A. Kaplyanskii, A. V. Prokofiev, L. A. Samoilovich, S. M. Samoilovich, and Yu. A. Vlasov, "Optical spectroscopy of opal matrices with CdS embedded in its pores: Quantum confinement and photonic bandgap effects," Il Nuovo Cimento, Vol. 17D, 1995.

    16. Romanov, S. G., A. V. Fokin, V. V. Tredijakov, V. Y. Butko, V. I. Alperovich, N. P. Johnson, and C. M. Sotomayor Torres, "Optical properties of ordered three-dimensional arrays of structurally confined semiconductors," J. Crystal Growth, Vol. 159, 1996.

    17. Vlasov, Yu. A., M. Deutsch, and D. J. Norris, "Single-domain spectroscopy of self-assembled photonic crystals," Appl. Phys. Lett., Vol. 76, 2000.
    doi:10.1063/1.126117

    18. Van Blaaderen, A., R. Ruel, and P. Wiltzius, "Template-directed colloidal crystallization," Nature, Vol. 385, 1997.
    doi:10.1038/385321a0

    19. Goodwin, J. W., J. Hearn, C. C. Ho, and R. H. Ottewill, "Studies on the preparation and characterisation of monodisperse polystyrene latices," Colloid Polym. Sci., Vol. 252, 1974.

    20. Gates, B., D. Qin, and Y. Xia, "Assembly of nanoparticles into opaline structures over large areas," Adv. Mat., Vol. 11, 1999.
    doi:10.1002/(SICI)1521-4095(199904)11:6<466::AID-ADMA466>3.0.CO;2-E

    21. Kralchevsky, P. A., N. D. Denkov., V. N. Paunov, O. D. Velev, I. B. Ivanov, H. Yoshimura, and K. Nagayama, "Formation of two-dimensional colloid crystals in liquid films under the action of capillary forces," J. Phys.: Condens. Matter, Vol. 6, 1994.
    doi:10.1088/0953-8984/6/23A/065

    22. Amos, R., J. G. Rarity, P. R. Tapster, and T. J. Shepherd, "Fabrication of large-area face-centered-cubic hard-sphere colloidal crystals by shear alignment," Phys. Rev. E, Vol. 61, 2000.
    doi:10.1103/PhysRevE.61.2929

    23. Vos, W. L. and H. M. van Driel, "Higher order Bragg diffraction by strongly photonic fcc crystals: onset of a photonic bandgap," Physics Letters A, Vol. 272, 2000.
    doi:10.1016/S0375-9601(00)00388-1

    24. Bertone, J. F., P. Jiang, K. S. Hwang, D. M. Mittleman, and V. L. Colvin, "Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals,'' Phys. Rev. Lett., Vol. 83, 300, 1999. Romanov, S. G., T. Maka, C. M. Sotomayor Torres, M. Muller, and R. Zentel, Thin film photonic crystals," Synthetic Metals, Vol. 116, No. 5, 2001.

    25. Reynolds, A., F. L´opez-Tejeira, D. Cassagne, F. J. García-Vidal, C. Jouanin, and J. Sanchez-Dehesa, "Spectral properties of opalbased photonic crystals having a SiO2 matrix," Phys. Rev. B., Vol. 60, 11422, 1999.
    doi:10.1103/PhysRevB.60.11422

    26. Pendry, J. B. and A. MacKinnon, "Calculation of photon dispersion relations,'' Phys. Rev. Lett., Vol. 69, 2772, 1992. Bell, P. M., J. B. Pendry, L. M. Moreno, and A. J. Ward, A program for calculating photonic band structures and transmission coefficients of complex structures," Comp. Phys. Comm., Vol. 85, 1995.

    27. Van Driel, H. M. and W. L. Vos, "Multiple Bragg wave coupling in photonic band-gap crystals," Phys. Rev. B, Vol. 62, 2000.
    doi:10.1103/PhysRevB.62.9872

    28. Romanov, S. G., T. Maka, C. M. Sotomayor Torres, M. Muller, R. Zentel, D. Cassagne, J. Manzanares-Martinez, and C. Jouanin, "Diffraction of light from thin-film polymethylmethacrylate opaline photonic crystals," Phys. Rev. E, Vol. 63, 056603, 2001.
    doi:10.1103/PhysRevE.63.056603

    29. Sözuer, H. S., J. W. Haus, and R. Inguva, "Photonic bands: Convergence problems with the plane-wave method," Phys. Rev. B, Vol. 45, 13962, 1992.
    doi:10.1103/PhysRevB.45.13962

    30. Busch, K. and S. John, "Photonic band gap formation in certain self-organizing systems," Phys. Rev. E, Vol. 58, 1998.
    doi:10.1103/PhysRevE.58.3896

    31. Wijnhoven, JEGJ and W. L. Vos, "Preparation of photonic crystals made of air spheres in titania," Science, Vol. 281, 1998.
    doi:10.1126/science.281.5378.802

    32. Blanco, A., E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Míguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature, Vol. 405, 2000.

    33. Doosje, M., B. J. Hoerders, and J. Knoester, "Photonic bandgap optimization in inverted fcc photonic crystals," J. Opt. Soc. Am. B, Vol. 17, 2000.

    34. Romanov, S. G., H. M. Yates, M. E. Pemble, and R. M. de la Rue, "Impact of GaP layer deposition upon photonic bandgap behaviour of opal," J. Phys.: Cond. Matter, Vol. 12, 2000.

    35. Muller, M., R. Zentel, T. Maka, S. G. Romanov, and C. M. Sotomayor Torres, "Photonic crystal films with high refractive index contrast," Adv. Mat., Vol. 12, 2000.

    36. Vlasov, Yu. A., N. Yao, and D. J. Norris, "Synthesis of photonic crystals for optical wavelengths from semiconductor quantum dots," Adv. Mat., Vol. 11, 1999.
    doi:10.1002/(SICI)1521-4095(199902)11:2<165::AID-ADMA165>3.0.CO;2-3

    37. Megens, M., JEGJ Wijnhoven, A. Lagendijk, and W. L. Vos, "Light sources inside photonic crystals," J. Opt. Soc. Am. B, Vol. 16, 1999.

    38. Romanov, S. G., A. V. Fokin, and R. M. de la Rue, "Eu3+ emission in an anisotropic photonic bandgap environment," Appl. Phys. Lett., Vol. 76, 2000.
    doi:10.1063/1.126126

    39. Bogomolov, V. N., S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, E. P. Petrov, N. V. Gaponenko, A. V. Prokofiev, A. N. Ponyavina, N. I. Silvanovich, and S. M. Samoilovich, "Photonic band gap phenomenon and optical properties of artificial opals," Phys. Rev. E, Vol. 55, 1997.
    doi:10.1103/PhysRevE.55.7619

    40. John, S., "Localization of light — theory of photonic band gap materials," Photonic Band Gap Materials, 563-665, 1995.

    41. Yamasaki, T. and T. Tsutsui, "Spontaneous emission from fluorescent molecules embedded in photonic crystals consisting of polystyrene microspheres," Appl. Phys. Lett., Vol. 72, 1998.
    doi:10.1063/1.121234

    42. Romanov, S. G., T. Maka, C. M. Sotomayor Torres, M. Muller, and R. Zentel, "Emission properties of dye-polymer-opal photnoic crystals," J. Lightwave Technol., Vol. 17, 1999.
    doi:10.1109/50.803002

    43. Suzuki, T. and P. K. L. Yu, "Emission power of an electric dipole in the photonic band structure of the fcc lattice," J. Opt. Soc. Am. B, Vol. 12, 1995.

    44. Kosaka, H., T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B, Vol. 58, 1998.
    doi:10.1103/PhysRevB.58.6339

    45. Purcell, E. M., "Spontaneous emission probabilities at radio frequencies," Phys. Rev., Vol. 69, 1946.
    doi:10.1103/PhysRev.69.37

    46. Moroz, A., "Three-dimensional complete photonic-band-gap structures in the visible," Phys. Rev. Lett., Vol. 83, 1999.
    doi:10.1103/PhysRevLett.83.5274

    47. Zhou, J., Y. Zhou, S. L. Ng, H. X. Zhang, W. X. Que, Y. L. Lam, Y. C. Chan, and C. H. Kam, "Three-dimensional photonic band gap structure of a polymer-metal composite," Appl. Phys. Lett., Vol. 76, 2000.

    48. Johnson, S. G. and J. D. Joannopoulos, "Block-iterative frequency- domain methods for Maxwell's equations in a planewave basis," Optics Express, Vol. 8, 2001.