PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 37 > pp. 79-99

HIGHER ORDER EMISSION MODEL STUDY OF BI-SINUSOIDAL SURFACE BRIGHTNESS TEMPERATURES

By J. T. Johnson

Full Article PDF (522 KB)

Abstract:
Models for microwave thermal emission from a rough surface are currently of interest due to the goal of improved sea surface wind vector retrievals from polarimetric brightness temperature measurements. Models based on either a small slope approximation or on a physical optics approach have been proposed and have shown some success in matching observations. Both of these models involve series solutions, but computation of higher order terms typically is difficult, particularly for multi-scale sea surface models. Knowledge of higher order term contributions, however, would assist in understanding the limitations of the low-order methods applied in practice. In this paper, higher order results from both the small slope and physical optics methods are studied and compared for a simple bi-sinusoidal surface model (i.e. height profile = Asin(2πx/Px) sin(2πy/Py), where Px and Py are the surface periods in the x and y directions, respectively). Results show both methods to provide good predictions for moderate slope "large scale" surfaces (i.e. periods large compared to the observing electromagnetic wavelength) when shadowing and multiple scattering effects are negligible, while only the small slope theory correctly predicts emission from "small scale" profiles. The influence of both shadowing and multiple scattering effects is examined, and the "binary" shadowing behavior used in the physical optics method is suggested as a source of larger errors observed as shadowing effects increase.

Citation:
J. T. Johnson, "Higher Order Emission Model Study of BI-Sinusoidal Surface Brightness Temperatures," Progress In Electromagnetics Research, Vol. 37, 79-99, 2002.
doi:10.2528/PIER02013000
http://www.jpier.org/PIER/pier.php?paper=020130

References:
1. Stogryn, A., "The apparent temperature of the sea at microwave frequencies," IEEE Trans. Ant. Prop., Vol. 15, 278-286, 1967.
doi:10.1109/TAP.1967.1138900

2. Wu, S. T. and A. K. Fung, "A noncoherent model for microwave emissions and backscattering from the sea surface," J. of Geophys. Res., Vol. 77, 5917-5929, 1972.
doi:10.1029/JC077i030p05917

3. Wentz, F. J., "A two-scale scattering model for foam-free sea microwave brightness temperatures," J. Geophys. Res., Vol. 80, 3441-3446, 1975.
doi:10.1029/JC080i024p03441

4. Etkin, V. S., N. N. Vorsin, Yu. A. Kravtsov, V. G. Mirovskii, V. V. Nikitin, A. E. Popov, and I. A. Troitskii, "Critical phenomena with the thermal radio irradiation of a periodically uneven water surface," Izvestiya: Radiophysics and Quantum Electronics, Vol. 21, 316-318, 1978.
doi:10.1007/BF01031700

5. Tsang, L. and J. A. Kong, "Energy conservation for reflectivity and transmissivity at a very rough surface," J. Appl. Phys., Vol. 51, 673-680, 1980.
doi:10.1063/1.327325

6. Tsang, L. and J. A. Kong, "Asymptotic solution for the reflectivity of a very rough surface," J. Appl. Phys., Vol. 51, 681-690, 1980.
doi:10.1063/1.327324

7. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, Wiley, New York, 1985.

8. Irisov, V. G., I. G. Trokhimovskii, and V. S. Etkin, "Radiothermal spectroscopy of the sea-surface," Doklady Akademii Nauk SSSR, Vol. 297, 587-589, 1987.

9. Mikhailova, D. V. and I. M. Fuks, "Emissivity of a statistically rough surface including multiple reflections," Sov. J. Commun. Tech. Elec., Vol. 38, 128-136, 1993.

10. Yueh, S. H., R. Kwok, F. K. Li, S. V. Nghiem, and W. J. Wilson, "Polarimetric passive remote sensing of ocean wind vectors," Radio Science, Vol. 29, 799-814, 1994.
doi:10.1029/94RS00450

11. Gasiewski, A. J. and D. B. Kunkee, "Polarized microwave emission from water waves," Radio Science, Vol. 29, 1449-1465, 1994.
doi:10.1029/94RS01923

12. Kunkee, D. B. and A. J. Gasiewski, "Simulation of passive microwave wind direction signatures over the ocean using an asymmetric-wave geometrical optics model," Radio Science, Vol. 32, 59, 1997.
doi:10.1029/96RS02434

13. Yueh, S. H., "Modeling of wind direction signals in polarimetric sea surface brightness temperatures," IEEE Trans. Geosc. Remote Sens., Vol. 35, 1400-1418, 1997.
doi:10.1109/36.649793

14. Irisov, V. G., "Small-slope expansion for thermal and reflected radiation from a rough surface," Waves in Random Media, Vol. 7, 1-10, 1997.
doi:10.1088/0959-7174/7/1/001

15. Johnson, J. T., R. T. Shin, and J. A. Kong, "Scattering and thermal emission from a two dimensional periodic surface," Progress in Electromagnetic Research 15, Chapter 11, J. A. Kong (ed.), EMW Publishing, Cambridge, Jan. 1997.

16. Camps, A., I. Corbella, and J. M. Rius, "Extension of Kirchhoff method under stationary phase approximation to determination of polarimetric thermal emission from the sea," Electronics Letters, Vol. 34, 1501-1503, 1998.
doi:10.1049/el:19981055

17. Johnson, J. T., R. T. Shin, L. Tsang, K. Pak, and J. A. Kong, "A numerical study of ocean polarimetric thermal emission," IEEE Trans. Geosc. Remote Sens., Vol. 37, 8-20, 1999.
doi:10.1109/36.739089

18. Johnson, J. T. and M. Zhang, "Theoretical study of the small slope approximation for ocean polarimetric thermal emission," IEEE Trans. Geosc. Remote Sens., Vol. 37, 2305-2316, 1999.
doi:10.1109/36.789627

19. Li, Q., L. Tsang, J. C. Shi, and C. H. Chan, "Application of physics based two-grid method and sparse matrix canonical grid method for numerical simulations of emissivities of soils with rough surfaces at microwave frequencies," IEEE Trans. Geosc. Remote Sens., Vol. 38, 1635-1643, 2000.
doi:10.1109/36.851963

20. Irisov, V. G., "Azimuthal variations of the microwave radiation from a slightly non-Gaussian sea surface," Radio Science, Vol. 53, 65-82, 2000.
doi:10.1029/1999RS900104

21. Zhang, M. and J. T. Johnson, "Comparison of modeled and measured second azimuthal harmonics of ocean surface brightness temperatures," IEEE Trans. Geosc. Remote Sens., Vol. 39, 448-452, 2001.
doi:10.1109/36.905253

22. Johnson, J. T. and Y. Cai, "A theoretical study of sea surface up/down wind brightness temperature differences," to appear, IEEE Trans. Geosc. Remote Sens., Jan. 2002.

23. Johnson, J. T., "Comparison of the physical optics and small slope theories for polarimetric thermal emission from the sea surface," accepted by IEEE Trans. Geosc. Remote Sens., 2002.

24. Dzura, M. S., V. S. Etkin, A. S. Khrupin, M. N. Pospelov, and M. D. Raev, "Radiometers polarimeters: principles of design and applications for sea surface microwave emission polarimetry," IGARSS 92 Conference Proceedings, 1432-1434, 1992.

25. Wentz, F. J., "Measurement of oceanic wind vector using satellite microwave radiometers," IEEE Trans. Geosc. and Remote Sens., Vol. 30, 960-972, 1992.
doi:10.1109/36.175331

26. Yueh, S. H., W. J. Wilson, F. K. Li, S. V. Nghiem, and W. B. Ricketts, "Polarimetric measurements of sea surface brightness temperatures using an aircraft K-band radiometer," IEEE Trans. Geosc. Remote Sens., Vol. 33, 85-92, 1995.
doi:10.1109/36.368219

27. Gasster, S. D. and G. M. Flaming, "Overview of the conical microwave imager/sounder development for the NPOESS program," IGARSS’98 Conference Proceedings, Vol. 1, 268-271, 1998.

28. Yueh, S. H., W. J. Wilson, S. J. Dinardo, and F. K. Li, "Polarimetric microwave brightness signatures of ocean wind directions," IEEE Trans. Geosc. Remote Sens., Vol. 37, 949-959, 1999.
doi:10.1109/36.752213

29. Piepmeier, J. R. and A. J. Gasiewski, "High-resolution passive polarimetric microwave mapping of ocean surface wind vector fields," IEEE Trans. Geosc. Remote Sens., Vol. 39, 606-622, 2001.
doi:10.1109/36.911118

30. Klein, L. A. and C. T. Swift, "An improved model for the dielectric constant of sea water at microwave frequencies," IEEE Trans. Ant. Prop., Vol. 25, 104-111, 1977.
doi:10.1109/TAP.1977.1141539

31. Yueh, S. H., R. Kwok, and S. V. Nghiem, "Polarimetric scattering and emission properties of targets with reflection symmetry," Radio Science, Vol. 29, 1409-1420, 1994.
doi:10.1029/94RS02228

32. Johnson, J. T., "Third order small perturbation method for scattering from dielectric rough surfaces," J. Opt. Soc. Am. A, Vol. 16, 2720-2736, 1999.
doi:10.1364/JOSAA.16.002720

33. Johnson, J. T., "Erratum: Third order small perturbation method for scattering from dielectric rough surfaces," J. Opt. Soc. Am. A, Vol. 17, 1685, 2000.
doi:10.1364/JOSAA.17.001685

34. Bruno, O. P. and F. Reitich, "Numerical solution of diffraction problems: a method of variation of boundaries: III. Doubly periodic gratings," J. Opt. Soc. Am. A, Vol. 10, 2551-2562, 1993.
doi:10.1364/JOSAA.10.002551

35., Maui High Performance Computing Center World Wide Web Site, on the World Wide Web at www.mhpcc.edu.

36. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 2nd edition, Cambridge Univ. Press, New York, 1992.

37. Barrick, D. E., "Near grazing illumination and shadowing of rough surfaces," Radio Science, Vol. 30, 563-580, 1995.
doi:10.1029/95RS00835

38. Holliday, D., "Resolution of a controversy surrounding the Kirchhoff approach and the small perturbation method in rough-surface scattering theory," IEEE Trans. Ant. Prop., Vol. 35, 120-122, 1987.
doi:10.1109/TAP.1987.1143978

39. Fung, A. K., Microwave Scattering and Emission Models and Their Applications, Artech House, Norwood, MA, 1994.

40. Elfouhaily, T., D. R. Thompson, D. Vandemark, and B. Chapron, "A new bistatic model for electromagnetic scattering from perfectly conducting random surfaces," Waves in Random Media, Vol. 9, 281-294, 1999.
doi:10.1088/0959-7174/9/3/301

41. Garcia, N., V. Celli, N. Hill, and N. Cabrera, "Ill conditioned matrices in the scattering of waves from hard corrugated surfaces," Phys. Rev. B, Vol. 18, 5184-5189, 1978.
doi:10.1103/PhysRevB.18.5184

42. Blackford, L. S., J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dogarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley, Scalapack Users’ Guide, SIAM Publications, Philadelphia, 1997.
doi:10.1137/1.9780898719642


© Copyright 2014 EMW Publishing. All Rights Reserved