Vol. 44
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
Scattering of X-Waves from a Circular Disk Using a Time Domain Incremental Theory of Diffraction
By
, Vol. 44, 103-129, 2004
Abstract
The diffraction and scattering of a first-order ultrawideband TE X-wave by a perfectly conducting circular disk is investigated using an augmented time-domain incremental theory of diffraction. The analysis relies on a pulsed plane wave representation of the incident X-wave. The diffraction and scattering of each constituent pulsed plane wave component is calculated at the observation point. A subsequent azimuthal angular superposition yields the diffracted and scattered field due to the incident X-wave pulse. Making use of the localization and symmetry properties of the incident TE X-wave, a novel four-sensor correlated detection scheme is introduced which is particularly effective in detecting the edges of the scattering disk and has an exceptional resolving power.
Citation
"Scattering of X-Waves from a Circular Disk Using a Time Domain Incremental Theory of Diffraction," , Vol. 44, 103-129, 2004.
doi:10.2528/PIER03032002
References

1. Brittingham, J. N., "Focus wave modes in homogeneous Maxwell equations: Transverse electric mode," J. Appl. Phys., Vol. 54, 1179-1189, 1983.
doi:10.1063/1.332196

2. Ziolkowski, R. W., "Exact solutions of the wave equation with complex source locations," J. Math. Phys., Vol. 26, 861-863, 1985.
doi:10.1063/1.526579

3. Ziolkowski, R. W., "Localized transmission of electromagnetic energy," Phys. Rev. A, Vol. 39, 2005-2033, 1989.
doi:10.1103/PhysRevA.39.2005

4. Ziolkowski, R. W., "Properties of electromagnetic beams generated by ultra-wide bandwidth pulse driven arrays," IEEE Trans. Antennas and Prop., Vol. 40, 888-905, 1992.
doi:10.1109/8.163426

5. Ziolkowski, R. W., D. Lewis, and B. Cook, "Evidence of localized wave transmission," Phys. Rev. Lett., Vol. 62, 147-150, 1989.
doi:10.1103/PhysRevLett.62.147

6. Lu, J. and J. F. Greenleaf, "Nondiffracting X waves — Exact solutions to free-space scalar wave equation and their finite aperture realization," IEEE Trans. on Ultrason. Ferroelect. Freq. Contr., Vol. 39, 19-31, 1992.
doi:10.1109/58.166806

7. Lu, J. Y. and J. F. Greenleaf, "Experimental verification of nondiffracting X waves," IEEE Trans. Ultrason. Ferroelec. Freq. Contr., Vol. 39, 441-446, 1992.
doi:10.1109/58.143178

8. Saari, P. and K. Reivelt, "Evidence of X-shaped propagationinvariant localized light waves," Phys. Rev. lett., Vol. 79, 4135-4138, 1997.
doi:10.1103/PhysRevLett.79.4135

9. Reivelt, K. and P. Saari, "Optical generation of focus wave modes," J. Opt. Soc. Am. A, Vol. 17, 1785-1790, 2000.

10. Besieris, I. M., A. M. Shaarawi, and R. W. Ziolkowski, "A bidirectional traveling wave representation of exact solution of the scalar wave equation," J. Math. Phys., Vol. 30, 1254-1269, 1989.
doi:10.1063/1.528301

11. Besieris, I., M. Abdel-Rahman, A. Shaarawi, and A. Chatzipetros, "Two fundamental representations of localized pulse solutions of the scalar wave equation," Progress in Electromagnetics Research, Vol. PIER 19, 1-48, 1998.
doi:10.2528/PIER97072900

12. Ziolkowski, R. W., I. M. Besieris, and A. M. Shaarawi, "Aperture realization of exact solution to homogenous-wave equations," J. Opt. Soc. Am. A, Vol. 10, 75-87, 1993.

13. Shaarawi, A. M., R. W. Ziolkowski, and I. M. Besieris, "On the evanescent fields and the causality of the focus wave modes," J. Math. Phys., Vol. 36, 5565-5587, 1995.
doi:10.1063/1.531277

14. Mugnai, D., A. Ranfagni, and R. Ruggeri, "Observation of superluminal behaviors in wave propagation," Phys. Rev. Lett., Vol. 84, 4830-4833, 2000.
doi:10.1103/PhysRevLett.84.4830

15. Recami, E., "On localized X-shaped superluminal solutions to Maxwell's equations," Physica A, Vol. 252, 586-610, 1998.
doi:10.1016/S0378-4371(97)00686-9

16. Attiya, A. M., "Transverse (TE) electromagnetic X-waves: Propagation, scattering, diffraction and generation problems," Ph.D. Thesis, No. 5, 2001.

17. Attiya, A. M., E. El-Diwany, A. M. Shaarawi, and I. M. Besieris, "Diffraction of a transverse electric (TE) X wave by conducting objects," Accepted for publication..

18. Kouyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, 1448-1461, 1974.

19. Rousseau, P. R. and P. H. Pathak, "Time-domain uniform geometrical theory of diffraction for a curved wedge," IEEE Trans. Antennas and Prop., Vol. 43, 1375-1382, 1995.
doi:10.1109/8.475925

20. Capolino, F. and R. Tiberio, "A time-domain incremental theory of diffraction (TD-ITD) for a wedge," Proceedings of the International Conference on Electromagnetic in Advanced Application (ICEAA 01), 10-14, 2001.

21. Tiberio, R. and S. Maci, "An incremental theory of diffraction: scalar formulation," IEEE Trans. Antennas and Prop., Vol. 42, 600-611, 1994.
doi:10.1109/8.299558

22. Tiberio, R., S. Maci, and A. Toccafondi, "An incremental theory of diffraction: Electromagnetic formulation," IEEE Trans. Antennas and Prop., Vol. 43, 87-96, 1995.
doi:10.1109/8.366356

23. Maci, S., R. Tiberio, and A. Toccafondi, "Incremental diffraction coefficients for source and observation at finite distances from an edge," IEEE Trans. Antennas and Prop., Vol. 44, 593-599, 1996.
doi:10.1109/8.496244

24. Fagerholm, J., A. Friberg, J. Huttunen, D. Morgan, and M. Salomaa, "Angular-spectrum representation of nondiffracting X waves," Physical Rev. E, Vol. 54, 4347-4352, 1996.
doi:10.1103/PhysRevE.54.4347

25. Attiya, A. M., E. El-Diwany, A. M. Shaarawi, and I. M. Besieris, "A time-domain incremental theory of diffraction: scattering of electromagnetic pulsed plane waves," submitted to the same journal..

26. Attiya, A. M., E. A. El-Diwany, A. M. Shaarawi, and I. M. Besieris, "Reflection and transmission of X-waves in the presence of planarly layered media: The pulsed plane wave representation," Progress in Electromagnetics Research, Vol. 30, 191-211, 2000.
doi:10.2528/PIER99090202

27. Jordan, E. C. and K. G. Balmain, Electromagnetic Waves and Radiating Systems, Prentice-Hall, New Delhi, 1974.

28. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series and Products, Fifth Edition, Academic Press, Boston, 1994.