Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 57 > pp. 209-236


By D. Pouhe

Full Article PDF (601 KB)

The propagation of the TEM and higher order Modes in GTEM cells is theoretically treated in this work in spherical coordinates. The derived wave equation for the principal mode is solved analytically in two different ways. In which case, two general closed-solutions are derived. In addition to this a simple approximation for the special case of the symmetric cells is presented. For higher order waves, E- and H-modes are determined by solving the Helmholz equations for phasor. By imposing the boundary conditions on fields, the determination of local higher-order modes is, for symmetric cells, reduced to the solution of a simple transcendental equation Lmνn (cos θ) = 0. For asymmetric cells, the matching-points method is applied. In the longitudinal direction, the propagation of the fields is examined by means of cylindrical functions which are combined with the spherical one. Furthermore, since the GTEM cell is a conical-horn resonator, the resonance behavior of the cell is investigated. The main advantages of the method amongst others are its simplicity and high degree of accuracy. Its appeal consist of precise description of the cell's geometry compared with the other methods.

D. Pouhe, "Spherical Waves in Conical TEM Cells," Progress In Electromagnetics Research, Vol. 57, 209-236, 2006.

1. Wilson, P. F., "Higher-order mode field distribution in asymmetric TEM cells," URSI Int. Symp. on EM Theory, No. 8, 1989.

2. De Leo, R., et al., "Rigorous analysis of the GTEM cell," IEEE Trans. on MTT, Vol. MTT-39, No. 3, 488-500, 1991.

3. Koch, M., "Analytische feldberechnung in TEM-Wellenleitern," Dissertation, 1998.

4. Legendre, A. E., "Sur l'attraction des speroïdes," Mém. Math. Phys., 1785.

5. Moon, P. and D. E. Spencer, Field Theory Handbook, Second edition, Springer-Verlag, Berlin, New York, 1971.

6. Pouhè, D., Rechnerische und Messtechnische Untersuchung einer GTEM-Zelle, Studienarbeit, TU Berlin, 1993.

7. Bronstein, I. N. and K. A. Semendja jew, Taschenbuch der Mathematik, 63, 23, Aufl., Verlag Harri Deutsch, 1987.

8. Piskounov, N., Calcul Diffé'rentiel et Intégral, 92-95, Tomes 2, 92-95, 9e édit., Édit. Mir, Moscou, 1980.

9. Hardy, G. H., Divergent Series, 320-321, Chap. XIII, 320-321, Clarendon, 1949.

10. Pouhè, D., "Eine alternative Lösung der partikülären Legendre'schen Wellengleichung ∂2D(ϑ)/ ∂ϑ2 + cotϑ·∂D(ϑ)/∂ϑ- m/sin2θ D(ϑ) = 0,", 977, 1993.

11. Pouhè, D. and G. Mönich, "Geschlossene lösungen fur den TEM-mode in GTEM-zellen," Proc. Int. Kongress EMV 2000, No. 2, 277-286, 2000.

12. Ramo, S., J. R. Whinnery, and T. van Duzer, Fields and Waves in Communication Electronics, 3rd edition, John Wiley & Sons, 1994.

13. Simonyi, K., Theoretische Elektrotechnik, 10. Auflage, Dt. Verlag der Wissenschaft, Leipzig, Berlin, Heidelberg, 1993.

14. Marcuvitz, N., Waveguide Handbook, 1st edition, New York, Toronto, London, 1951.

15. Pouhè, D., "On the theory of spherical waves in GTEM-cells: Higher-order modes in unloaded cells," Proc. of IEEE Int. Symp. on EMC 2001, Vol. 1, No. 8, 408-443, 2001.

16. Kleinwachter, H., "Die Wellenausbreitung in zylindrischen Hohlleitern und die Hertzsche Lösung als Sonderfälle der Wellenausbreitung in trichterformigen Hohlleitern," A.E.Ü., 231-236, 1951.

17. Piefke, G., "Die Ausbreitung elektromagnetischer Wellen in einem Pyramiden-lrichter," Zeit. für ang. Physik, 499-507, 1954.

18. Yamashita, E., Analysis Methods for Electromagnetic Wave Problems, Artech House, Boston, London, 1990.

© Copyright 2014 EMW Publishing. All Rights Reserved