PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 63 > pp. 243-278

SINGULARITY SUBTRACTION INTEGRAL FORMULAE FOR SURFACE INTEGRAL EQUATIONS WITH RWG, ROOFTOP AND HYBRID BASIS FUNCTIONS

By I. Hanninen, M. Taskinen, and J. Sarvas

Full Article PDF (441 KB)

Abstract:
Numerical solution of electromagnetic scattering problems by the surface integral methods leads to numerical integration of singular integrals in the Method of Moments. The heavy numerical cost of a straightforward numerical treatment of these integrals can be avoided by a more efficient and accurate approach based on the singularity subtraction method. In the literature the information of the closed form integral formulae required by the singularity subtraction method is quite fragmented. In this paper we give a uniform presentation of the singularity subtraction method for planar surface elements with RWG, n̂ x RWG, rooftop, and n̂ x rooftop basis functions, the latter three cases being novel applications. We also discuss the hybrid use of these functions. The singularity subtraction formulas are derived recursively and can be used to subtract more than one term in the Taylor series of the Green's function.

Citation: (See works that cites this article)
I. Hanninen, M. Taskinen, and J. Sarvas, "Singularity Subtraction Integral Formulae for Surface Integral Equations with Rwg, Rooftop and Hybrid Basis Functions," Progress In Electromagnetics Research, Vol. 63, 243-278, 2006.
doi:10.2528/PIER06051901
http://www.jpier.org/PIER/pier.php?paper=06051901

References:
1. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. AP-30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

2. Duffy, M. G., "Quadrature over a pyramid or cube of integrands with a singularity at a vertex," SIAM Journal on Numerical Analysis, Vol. 19, No. 12, 1260-1262, 1982.
doi:10.1137/0719090

3. Khayat, M. A. and D. R. Wilton, "Numerical evaluation of singular and near-singular potential integrals," IEEE Trans. Antennas Propagat., Vol. 53, No. 10, 3180-3190, 2005.
doi:10.1109/TAP.2005.856342

4. Wilton, D. R., S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler, "Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains," IEEE Trans. Antennas Propagat., Vol. AP- 32, No. 3, 276-281, 1984.
doi:10.1109/TAP.1984.1143304

5. Graglia, R. D., "On the numerical integration of the linear shape functions times the 3-D Green's function or its gradient on a plane triangle," IEEE Trans. Antennas Propagat., Vol. 41, No. 10, 1448-1455, 1993.
doi:10.1109/8.247786

6. Caorsi, S., D. Moreno, and F. Sidoti, "Theoretical and numerical treatment of surface integrals involving the free-space Green's function," IEEE Trans. Antennas Propagat., Vol. 41, No. 9, 1296-1301, 1993.
doi:10.1109/8.247757

7. Eibert, T. F. and V. Hansen, "On the calculation of potential integrals for linear source distributions on triangular domains," IEEE Trans. Antennas Propagat., Vol. 43, No. 12, 1499-1502, 1995.
doi:10.1109/8.475946

8. Yla-Oijala, P. and M. Taskinen, "Calculation of CFIE impedance matrix elements with RWG and n×RWG functions," IEEE Trans. Antennas Propagat., Vol. 51, No. 8, 1837-1846, 2003.
doi:10.1109/TAP.2003.814745

9. Jarvenpaa, S., M. Taskinen, and P. Yla-Oijala, "Singularity extraction technique for integral equation methods with higher order basis functions on plane triangles and tetrahedra," International Journal for Numerical Methods in Engineering, Vol. 58, 1149-1165, 2003.
doi:10.1002/nme.810

10. Jarvenpaa, S., M. Taskinen, and P. Yla-Oijala, "Singularity subtraction technique for high-order polynomial vector basis functions on planar triangles," IEEE Trans. Antennas Propagat., Vol. 54, No. 1, 42-49, 2006.
doi:10.1109/TAP.2005.861556

11. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, 1980.

12. Girard, A., Invention Nouvelle en Algebre, Amsterdam, Netherlands, 1629.

13. Rade, L. and B. Westergren, Mathematics Handbook for Science and Engineering, Fourth edition, Studentlitteratur, 1998.


© Copyright 2014 EMW Publishing. All Rights Reserved