Vol. 63
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-08-21
A Maxwell Garnett Model for Dielectric Mixtures Containing Conducting Particles at Optical Frequencies
By
, Vol. 63, 223-242, 2006
Abstract
Mathematical modeling of composites made of a dielectric base and randomly oriented metal inclusions is considered. Different sources of frequency-dependent metal conductivity at optical frequencies are taken into account. These include the skin-effect, dimensional (length-size) resonance of metal particles, and the Drude model. Also, the mean free path of electrons in metals can be smaller than the characteristic sizes of nanoparticles, and this leads to the decrease in conductivity of the metal inclusions. These effects are incorporated in the Maxwell Garnett mixing formulation, and give degrees of freedom for forming desirable optical frequency characteristics of composite media containing conducting particles.
Citation
Marina Koledintseva, Richard DuBroff, and Robert Schwartz, "A Maxwell Garnett Model for Dielectric Mixtures Containing Conducting Particles at Optical Frequencies," , Vol. 63, 223-242, 2006.
doi:10.2528/PIER06052601
References

1. Maxwell, G. and J. C., "Colours in metal glasses and metal films," Philos. Trans. R. Soc. London, Vol. 3, 385-420, 1904.

2. Koledintseva, M. Y.P. C. Ravva, R. E. DuBroff, J. L. Drewniak, K. N. Rozanov, and B. Archambeault, "Engineering of composite media for shields at microwave frequencies," Proc. IEEE EMC Symposium, Vol. 1, No. 8, 169-174, 2005.

3. Koledintseva, M. Y.J. Wu, J. Zhang, J. L. Drewniak, and K. N. Rozanov, "Representation of permittivity for multi-phase dielectric mixtures in FDTD modeling," Proc. IEEE Symp. Electromag. Compat., Vol. 1, 9-13, 2004.

4. Matitsine, S. M., K. M. Hock, L. Liu, and et. al., "Shift of resonance frequency of long conducting fibers embedded in a composite," J. Appl. Phys., Vol. 94, No. 2, 1146-1154, 2003.
doi:10.1063/1.1577395

5. Huang, J.M. Y. Koledintseva, P. C. Ravva, J. L. Drewniak, R. E. DuBroff, B. Archambeault, and K. N. Rozanov, "Design of a metafilm-composite dielectric shielding structure using a genetic algorithm," Proc. Progress in Electromagnetic Research Symposium (PIERS), 26-29, 2006.

6. Lagarkov, A. N. and A. K. Sarychev, "Electromagnetic properties of composites containing elongated conducting inclusions," Phys. Review B, Vol. 53, No. 9, 6318-6336, 1996.
doi:10.1103/PhysRevB.53.6318

7. Landau, L. D., E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, 2 Ed., Oxford, Pergamon, New York, 1984.

8. Gottlieb, D. and V. Halpern, "The electrical conductivity of very thin metal films," J. Phys. F: Metal. Phys., Vol. 6, No. 12, 2333-2339, 1976.
doi:10.1088/0305-4608/6/12/019

9. Chen and D. Gardner, "Influence of line dimensions on the resistance of Cu interconnections," IEEE Electr. Dev. Lett., Vol. 19, No. 12, 508, 1998.
doi:10.1109/55.735762

10. Kapur, P., J. P. McVittie, and K. C. Saraswat, "Technology and reliability constrained future copper interconnects — Part I: Resistance modeling," IEEE Trans. Electr. Dev., Vol. 49, No. 4, 590-597, 2002.
doi:10.1109/16.992867

11. Im, S.N. Srivastava, K. Banerjee, and K. Goodson, "Thermal scaling analysis of multilevel C/low-k interconnect structures in deep nanometer scale technologies," Proc. 22th Int. VLSI Multilevel Interconnect Conf. (VMIC), 3-6, 2005.

12. Zhang, R., S. Dods, and P. Catrysse, "FDTD approach for optical metallic material," Laser Focus World, 68, July 2004.

13. Veronis, G., R. W. Dutton, and S. Fan, "Metallic photonic crystals with strong broadband absorption at optical frequencies over wide angular range," J. Appl. Phys., Vol. 97, No. 9, 2005.
doi:10.1063/1.1889248

14. Ordal, M. A., L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Optics, Vol. 22, No. 7, 4493-4499, 1983.

15. Ordal, M. A., R. J. Bell, R. W. Alexander, Jr., L. L. Long, and M. R. Querry, "Optical properties of the metals Al, Co, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Optics, Vol. 24, No. 24, 1099-1120, 1985.

16. Tretyakov, S. A., F. Mariotte, C. R. Simovski, T. G. Kharina, and J.-P. Heliot, "Analytical antenna model for chiral scatterers: comparison with numerical and experimental data," IEEE Trans. Antennas and Propagat., Vol. 44, No. 7, 1006-1014, 1996.
doi:10.1109/8.504309

17. Tretyakov, S. A., "Metamaterials with wideband negative permittivity and permeability," Microw. Opt. Techn. Lett., Vol. 31, No. 3, 163-165, 2001.
doi:10.1002/mop.1387

18. King, R. W. P. and C. W. Harrison, Antennas and Waves: A Modern Approach, MIT Press, Cambridge, MA, 1969.

19. Orfanidis, S. J., Electromagnetic Waves and Antennas, http://www.ece.rutgers.edu/ orfanidi/ewa.

20. Sazonov, D.M., Anntennas and Microwave Devices, Vysschaya Shkola, Moscow, Russia, 1988.

21. Risko, J. J., L. J. Brillson, R. W. Bigelow, and T. J. Fabish, "Electron energy loss spectroscopy and the optical properties of polymethylmethacrylate from 1 to 300 eV," J. Chem Phys., Vol. 69, No. 9, 3931-3939, 1978.
doi:10.1063/1.437131

22. Koledintseva, M. Y., J. L. Drewniak, D. J. Pommerenke, K. N. Rozanov, G. Antonini, and A. Orlandi, "Wideband lorentzian media in the FDTD algorithm," IEEE Trans. Electromag. Compat., Vol. 47, No. 2, 392-398, 2005.
doi:10.1109/TEMC.2005.847406

23. Colored Optical Glass, http://www.lzos.ru/en/glass color.htm.