Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 64 > pp. 205-218


By N. Wongkasem, A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue

Full Article PDF (260 KB)

Broadband planar and non-planar negative refractive index (NRI) metamaterial (MTM) designs consisting of a periodically arranged split ring resonator and wire structures are developed in the terahertz (THz) frequency regime using the Finite-Difference Time- Domain (FDTD) method. The novel MTM designs generate a broad negative index of refraction (NIR) passband approximately two and a half times higher than those of the conventional SRR/wire structures, by using the same dimensions. Numerical simulations of wedgeand triangle-shaped metamaterials are used to prove the negative refractive index of the models. The fabricated MTMs exhibit passband characteristics which are in good agreement with the model results. The parametric studies of correlated factors further support these outcomes.

Citation: (See works that cites this article)
N. Wongkasem, A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, "Novel Broadband Terahertz Negative Refractive Index Metamaterials: Analysis and Experiment," Progress In Electromagnetics Research, Vol. 64, 205-218, 2006.

1. Woodward, R. M., Terahertz technology in homeland security and defense, Proc. SPIE, Vol. 5781, 22-31, 2005.

2. Federici, J. F., D. Gary, R. Barat, and D. Zimdars, THz standoff detection and imaging of explosives and weapons, Proc. SPIE, Vol. 5781, 75-84, 2005.

3. Podolskiy, V. A. and E. E. Narimanov, "Strongly anisotropic waveguide as a nonmagnetic left-handed system," Phys. Rev. B, Vol. 71, No. 20, 201101, 2005.

4. Katsarakis, N., T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett., Vol. 84, No. 15, 2943-2945, 2004.

5. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.

6. Markos, P. and C. M. Soukoulis, "Numerical studies of lefthanded materials and arrays of split ring resonators," Phys. Rev. E, Vol. 65, No. 3, 036622, 2002.

7. Marques, R., F. Medina, and R. Rafii-El-Idrissi, "Role of bianisotropy in negative permeability and left-handed metamaterials," Phys. Rev. B, Vol. 65, No. 14, 144440, 2002.

8. Gay-Balmaz, P., and O. J. F. Martin, "Electromagnetic resonances in individual and coupled split-ring resonators," J. Appl. Phys., Vol. 92, No. 5, 2929-2936, 2002.

9. Moss, C. D., T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, "Numerical studies of left handed metamaterials," Progress In Electromagnetics Research, Vol. PIER 35, 315-334, 2002.

10. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Trans. Antennas and Propagat., No. 7, 1516-1529, 2003.

11. Kafesaki, M., T. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, "Left-handed metamaterials: detailed numerical studies of the transmission properties," J. Opt. A:Pur e Appl. Opt., Vol. 7, 12, 2005.

12. García-Garca, J., F. Martín, J. D. Baena, Marques, and R. L. Jelinek, "On the resonances and polarizabilities of split ring resonators," J. Appl. Phys., Vol. 98, No. 3, 033103, 2005.

13. Koschny, Th., L. Zhang, and C. M.Soukoulis, "Isotropic three dimensional left-handed metamaterials," Phys. Rev. B, Vol. 71, No. 12, 121103, 2005.

14. Enkrich, C., M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett., Vol. 95, No. 20, 203901, 2005.

15. Islam, M. N., C. E. Soccolich, J. P. Gordon, and U. C. Paek, "Soliton intensity-dependent polarization rotation," Opt. Lett., Vol. 15, No. 1, 21-23, 1990.

16. Gustavsson, M., "Analysis of polarization independent optical amplifiers and filters based," IEEE J. Quantum Electron., Vol. 29, 1168-1178, 1993.

17. Derov, J. S., B. Turchinetz, E. E. Crisman, A. J. Drehman, and R. Wing, "Negative index metamaterial for selective angular separation of microwaves by polarization," IEEE Ant. and Prop. Society Sym., Vol. 4, 2004.

18. Ozbay, E., K. Aydin, E. Cubukcu, and M. Bayindir, "Transmission and reflection properties of composite double negative metamaterials in free space," IEEE Trans. Antennas Propagat., Vol. 51, No. 10, 2592-2595, 2003.

19. Koschny, T., M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective medium theory of left-handed materials," Phys. Rev. Lett., Vol. 93, No. 10, 107402, 2004.

20. Katsarakis, N., T. Koschny, M. Kafesaki, E. N. Economou, E. Ozbay, and C. M. Soukoulis, "Left-and right-handed transmission peaks near the magnetic resonance frequency in composite metamaterials," Phys. Rev. B, Vol. 70, No. 20, 201101, 2004.

21. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.

© Copyright 2014 EMW Publishing. All Rights Reserved