Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 74 > pp. 379-405


By S. P. Singh, R. Gangwar, and N. Singh

Full Article PDF (390 KB)

The nonlinear scattering effects in optical fiber occur due to inelastic-scattering of a photon to a lower energy photon. This paper describes stimulated Brillouin scattering and stimulated Raman scattering processes. Their thresholds, reduction in power penalty and applications along with comparative study of these effects are also presented.

Citation: (See works that cites this article)
S. P. Singh, R. Gangwar, and N. Singh, "Nonlinear scattering effects in optical fibers," Progress In Electromagnetics Research, Vol. 74, 379-405, 2007.

1. Boyd, R. W., Nonlinear Optics, Academic Press, SanDiego, CA, 1992.

2. Shen, Y. R. and N. Bloembergen, "Theory of stimulated brillouin and raman scattering," Phys. Rev. A, Vol. 137, 1787-1805, 1965.

3. Singh, S. P. and N. Singh, "Nonlinear effects in optical fibers: origin, management and applications," Progress In Electromagnetics Research, Vol. 73, 249-275, 2007.

4. Buckland, E. L. and R. W. Boyd, "Electrostrictive contribution to the intensity-dependent refractive index of optical fiber," Opt. Lett., Vol. 21, 1117-1119, 1996.

5. Buckland, E. L. and R. W. Boyd, "Measurement of the frequency response of the electrostrictive nonlinearity in optical fiber," Opt. Lett., Vol. 22, 676-678, 1997.

6. Agrawal, G. P., Nonlinear Fiber Optics, 3rd edition, Academic Press, SanDiego, CA, 2001.

7. Nikles, M., L. Thevenaz, and P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fiber," J. Lightwave. Tech., Vol. 15, 1842-1851, 1997.

8. Sternklar, S. and E. Granot, "Narrow spectral response of a Brillouin amplifier," Opt. Lett., Vol. 28, 977-979, 2003.

9. Cotter, D., "Observation of stimulated Brillouin scattering in lowloss silica fiber at 1.3 μm," Electron. Lett., Vol. 18, 495-496, 1982.

10. Tkach, R. W., A. R. Chraplyvy, and R. M. Derosier, "Spontaneous Brillouin scattering for single-mode optical fiber characterization," Electron. Lett., Vol. 22, 1011-1013, 1986.

11. Smith, R. G., "Optical power handling capacity of low optical fibers as determined by stimulated Raman and Brillouin scattering," Appl. Opt., Vol. 11, 2489-2494, 1972.

12. Stolen, R. J., "Polarization effects in Raman and Brillouin lasers," IEEE J. Quantum Electron., Vol. QE-15, 1157-1160, 1979.

13. Mao, X. P., R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, and R. M. Dorosier, "Stimulated Brillouin threshold dependence on fiber type and uniformity," IEEE Photonics Tech. Lett., Vol. 4, 66-69, 1992.

14. Ramaswami, R. and K. Sivarajan, Optical Networks—A Practical Perspective, Morgan Kaufmann Pub. Inc., San Francisco, 1998.

15. Forghieri, F., R. W. Tkach, and A. R. Chraplyvy, "Fiber nonlinerities and their impact on transmission systems," Optical Fiber Telecommunications-III, Vol. A, 1997.

16. Fishman, D. A. and J. A. Nagel, "Degradation due to stimulated Brillouin scattering in multigigabit intensity-modulated fiberoptic systems," J. Lightwave Tech., Vol. 11, 1721-1728, 1993.

17. Kee, H. H., G. P. Lees, and T. P. Newson, "All-fiber system for simultaneous interrogation of distributed strain and temperature sensing by spontaneous Brillouin scattering," Opt. Lett., Vol. 25, 1-3, 2000.

18. Kotate, K. and M. Tanaka, "Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique," IEEE Photon. Tech. Lett., Vol. 14, 179-181, 2002.

19. Pannell, C. N., P. St. J. Russell, and T. P. Newson, "Stimulated Brillouin scattering in optical fibers: the effect of optical amplification," J. Opt. Soc. Amer. B, Vol. 10, 684-690, 1993.

20. Lan, G.-L., P. K. Banerjee, and S. S. Mitra, "Raman scattering in optical fibers," J. of Raman Spectrosc., Vol. 11, 416-423, 1981.

21. Shibate, N., M. Horigudhi, and T. Edahiro, "Raman spectra of binary high-silica glasses and fibers containing GeO2, P2O5 and B2O3," J. of Non-crystalline Solids, Vol. 45, 115-126, 1981.

22. Bromage, J., "Raman amplification for fiber communication systems," J. Lightwave. Tech., Vol. 22, 79-93, 2004.

23. Lewis, S. A. E., S. V. Chernikov, and J. R. Taylor, "Temperature dependent gain and noise in fiber Raman amplifier," Opt. Lett., Vol. 24, 1823-1825, 1999.

24. Stolen, R. H., E. P. Ippen, and A. R. Tynes, "Raman oscillation in glass optical waveguide," Appl. Phys. Lett., Vol. 20, 62-64, 1972.

25. Stolen, R. H. and E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett., Vol. 22, 276-278, 1973.

26. Tomlinson, W. J. and R. H. Stolen, "Nonlinear phenomenon in optical fibers," IEEE Commun. Mag., Vol. 26, No. 4, 36-44, 1988.

27. Ohmori, Y., Y. Sasaki, and T. Edahiro, "Fiber-length dependence of critical power for stimulated Raman scattering," Electron. Lett., Vol. 17, No. 17, 593-594, 1981.

28. Back, S. H. and W. B. Roh, "Single-mode Raman fiber laser based on a multimode fiber," Opt. Lett., Vol. 29, 153-155, 2004.

29. Karpov, V. I., E. M. Dianov, V. M. Paramonoc, O. I. Medvedkov, M. M. Bubnov, S. L. Semyonov, S. A. Vasiliev, V. N. Protopopov, D. N. Egorova, V. F. Hopkin, A. N. Guryanov, M. P. Bachymki, and W. Clements, "Laser-diode pumped phosphosilicate-fiber Raman laser with an output power of 1W at 1.48 nm," Opt. Lett., Vol. 24, 887-889, 1999.

30. Aoki, Y., "Properties of Raman amplifier and their applicability to digital optical communication systems," J. Lightwave. Tech., Vol. LT-6, 1225-1239, 1988.

31. Bars, F. and L. Resnic, "On the theory of the electromagnetic wave-propagation through inhomogeneous dispersive media," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 7, 925-931, 2005.

32. Wang, S., X. Guan, D.Wang, X. Ma, and Y. Su, "Electromagnetic scattering by mixed conducting/dielectric objects using high-order MOM," Progress In Electromagnetics Research, Vol. 66, 51-63, 2006.

33. Anupam, R., M. Chandran, C. K. Anandan, P. Mohanan, and K. Vasudevan, "Scattering behavior of fractal based metallodielectric structures," Progress In Electromagnetics Research, Vol. 69, 323-339, 2007.

34. Brown, A. W., B. G. Colpitts, and K. Brown, "Darkpulse Brillouin optical time-domain sensor with 20-mm spatial resolution," J. of Lightwave Technology, Vol. 25, No. 1, 381-386, 2007.

35. Misas, C. J., P. Petropoulos, and D. J. Richardson, "Slowing of pulses to c/10 with subwatt power levels and low latency using Brillouin amplification in a bismuth-oxide optical fiber," J. of Lightwave Technology, Vol. 25, No. 1, 216-221, 2007.

36. Brown, K. C., T. H. Russell, T. G. Alley, and W. B. Roh, "Passive combination of multiple beams in an optical fiber via stimulated Brillouin scattering," Optics Letters, Vol. 32, No. 9, 1047-1049, 2007.

37. Song, K. Y., M. Herraez, and L. Thevenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Optics Express, Vol. 13, No. 1, 82-88, 2005.

38. Kalosha, V. P., L. Chen, and X. Bao, "Slow and fast light via SBS in optical fibers for short pulses and broadband pump," Optics Express, Vol. 14, No. 26, 12693-12703, 2006.

39. Zou, L., X. Bao, F. Ravet, and L. Chen, "Distributed Brillouin fiber sensor for detecting pipeline buckling in an energy pipe under internal pressure," Applied Optics, Vol. 45, No. 14, 3372-3377, 2006.

40. Huang, J., J. Lin, R. Su, J. Li, H. Zheng, C. Xu, F. Shi, Z. Lin, J. Zhuang, W. Zeng, and W. Lin, "Short pulse eye-safe laser with a stimulated Raman scattering self-conversion based on a Nd:KGW crystal," Optics Letters, Vol. 32, No. 9, 1096-1098, 2007.

© Copyright 2014 EMW Publishing. All Rights Reserved