PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 76 > pp. 253-274

BISTATIC SCATTERING FROM ROUGH DIELECTRIC SOIL SURFACE WITH A CONDUCTING OBJECT WITH ARBITRARY CLOSED CONTOUR PARTIALLY BURIED BY USING THE FBM/SAA METHOD

By Z.-X. Li

Full Article PDF (2,136 KB)

Abstract:
A hybrid approach of the forward-backward method (FBM) with spectral accelerate algorithm (SAA) and Monte Carlo method is developed in this paper. It is applied to numerical simulation of bistatic scattering from one-dimensional arbitrary dielectric constant soil surface with a conducting object with arbitrary closed contour partially buried under both the horizontal and vertical polarization tapered wave incidence at low grazing angle. The energy conservation has been checked for the FBM/SAA. Numerical simulations of bistatic scattering at low grazing angle have been discussed in this paper.

Citation:
Z.-X. Li, "Bistatic scattering from rough dielectric soil surface with a conducting object with arbitrary closed contour partially buried by using the FBM/SAA method," Progress In Electromagnetics Research, Vol. 76, 253-274, 2007.
doi:10.2528/PIER07071501
http://www.jpier.org/PIER/pier.php?paper=07071501

References:
1. Holliday, D., L. L. DeRaad, and G. J. St-Cyr, "Forward-backward: A new method for computing low-grazing angle scattering," IEEE Trans. on Anten. and Propagat., Vol. 44, No. 5, 722-729, 1996.
doi:10.1109/8.496263

2. Kapp, D. A. and G. S. Brown, "A new numerical method for rough surface scattering calculations," IEEE Trans. on Anten. and Propagat., Vol. 44, No. 5, 711-721, 1996.
doi:10.1109/8.496258

3. Chou, H. T. and J. T. Johnson, "A novel acceleration algorithm for the computation of scattering, from rough surfaces with the forward-backwards method," Radio Science, Vol. 33, No. 5, 1277-1287, 1998.
doi:10.1029/98RS01888

4. Li, Z. X. and Y. Q. Jin, "Numerical simulation of bistatic scattering from a fractal rough surface using the forward-backward method," Electromagnetics, Vol. 22, No. 3, 191-207, 2002.
doi:10.1080/02726340252886465

5. Holliday, D., L. L. DeRaad, and G. J. St-Cyr, "Forward-backward method for scattering from imperfect conductors," IEEE Trans. on Anten. and Propagat., Vol. 46, No. 1, 101-107, 1998.
doi:10.1109/8.655456

6. Chou, H. T. and J. T. Johnson, "Formulation of forward-backward method using novel spectral acceleration for the modeling of scattering from impedance rough surfaces," IEEE Transactions on Geosicence and Remote Sensing, Vol. 38, No. 1, 605-607, 2000.
doi:10.1109/36.823954

7. Burkholder, R. J. and T. Lundin, "Forward-backward iterative physical optics algorithm for computing the RCS of openended cavities antennas and propagation," IEEE Trans. on Anten. and Propagat., Vol. 53, No. 2, 793-799, 2005.
doi:10.1109/TAP.2004.841317

8. Zhang, P. F. and S. X. Gong, "Improvement on the forwardbackward iterative physical optics algorithm applied to computing the RCS of large open-ended cavities," Journal of Electromagnetic Wave and Application, Vol. 21, No. 4, 457-469, 2007.
doi:10.1163/156939307779367297

9. Jin, Y. Q. and Z. X. Li, "Bistatic scattering and transmission through a fractal rough dielectric surface using the forward and backward method with spectrum acceleration algorithm," Journal of Electromagnetic Wave and Application, Vol. 16, No. 4, 551-572, 2002.
doi:10.1163/156939302X00444

10. Li, Z. X. and Y. Q. Jin, "Bistatic scattering and transmitting through a fractal rough surface with high permittivity using the physics-based two-grid method in conjunction with the forwardbackward method and spectrum acceleration algorithm," IEEE Trans. on Anten. and Propagat., Vol. 50, No. 9, 1323-1327, 2002.
doi:10.1109/TAP.2002.802166

11. Iodice, A., "Forward-backward method for scattering from dielectric rough surface," IEEE Trans. on Anten. and Propagat., Vol. 50, No. 7, 901-911, 2002.
doi:10.1109/TAP.2002.800700

12. Iodice, A., "Scattering from natural soils modeled by dielectric fractal profile: the Forward-backward approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 1, 77-85, 2004.
doi:10.1109/TGRS.2003.816664

13. Pino, M. R., et al., "The generalized Forward-Backward method for analyzing the scattering from targets on ocean-like rough surfaces," IEEE Trans. on Anten. and Propagat., Vol. 47, No. 6, 961-968, 1999.
doi:10.1109/8.777118

14. Pino, M. R., et al., Fast generalized forward-backward method by using a spectral acceleration, Antennas and Propagation Society International Symposium, Vol. 2, 11-16, 1999.

15. Wang, X., C. F. Wang, and Y. B. Gan, "Electromagnetic scattering from a circular target above or below rough surface," Progress In Electromagnetics Research, Vol. 40, 207-227, 2003.
doi:10.2528/PIER02111901

16. Xu, X. B. and C. M. Butler, "Current induced by TE excitation on coupled and partially buried cylinder at the interface between two media," IEEE Trans. on Anten. and Propagat., Vol. 38, No. 11, 1823-1828, 1990.
doi:10.1109/8.102745

17. Mallahzadeh, A. R. and M. Soleimani, "Scattering computation from the target with lossy background," Progress In Electromagnetic Research, Vol. 57, 151-163, 2006.
doi:10.2528/PIER05070503

18. Zhang, Y. J. and E. P. Li, "Scattering of three-dimensional chiral objects above a perfect conducting plane by hybrid finite element method," Journal of Electromagnetic Wave and Application, Vol. 19, No. 11, 1535-1546, 2005.
doi:10.1163/156939305775701813

19. Chiu, T. and K. Sarabandi, "Electromagnetic scattering interaction between a dielectric cylinder and a slight rough surface," IEEE Trans. on Anten. and Propagat., Vol. 47, No. 10, 902-913, 1999.
doi:10.1109/8.774155

20. Liu, P. and Y. Q. Jin, "The finite element method with domian decomposition for electromagnetic bistatic scattering from the comprehensive model of a ship on and a target above a large scale rough sea surface," IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 5, 950-956, 2004.
doi:10.1109/TGRS.2004.825583

21. Jin, Y. Q. and Z. X. Li, "Numerical simulation of radar survellance for the ship targer and oceanic clutters in two-dimensional model," Radio Science, Vol. 38, No. 3, 11-1, 2003.
doi:10.1029/2002RS002692

22. Jin, Y. Q. and Z. X. Li, "Simulation of scattering from complex rough surface at low grazing angle using the GFBM/SAA method," IEE J. Transactions of Fundamentals and Materials Society (A), Vol. 121, No. 10, 917-921, 2001.

23. Pino, M. R., R. J. Burkdolder, and F. Obelleiro, "Spectral acceleration of the generalized forward-backward method," IEEE Trans. on Anten. and Propagat., Vol. 50, No. 6, 785-797, 2002.
doi:10.1109/TAP.2002.1017658

24. Adams, R. J. and G. S. Brown, "A combined field approach to scattering from infinite elliptical cylinders using the method of ordered multiple interactions," IEEE Trans. on Anten. and Propagat., Vol. 47, No. 2, 364-375, 1999.
doi:10.1109/8.761077

25. Adams, R. J. and G. S. Brown, "A rapidly convergent iterative method for two-dimensional closed-body scattering problems," Microwave and Optical Technology Letters, Vol. 20, No. 3, 179-183, 1999.
doi:10.1002/(SICI)1098-2760(19990205)20:3<179::AID-MOP9>3.0.CO;2-5

26. Li, Z. X., "Bistatic scattering from rough dielecreic soil surface with a conducting object partially buried by using the GFBM/SAA method," IEEE Trans. on Anten. and Propagat., Vol. 54, No. 7, 2072-2080, 2006.
doi:10.1109/TAP.2006.877187

27. Kong, J. A., Electromagnetic Wave Theory, 2nd edition, New York, Wiley, 1990.

28. Harrington, R. F., Field Computation by Moment Method, IEEE Press, New York, 1993.

29. Mandelbrot, B. B., The Fractal Geometry of Nature, Freeman, San Fancisco, CA, 1983.

30. Franceschetti, G., A. Iodice, M. Migliaccio, and D. Riccio, "Fractals and small perturbation scattering model," Radio Science, Vol. 34, No. 5, 1043-1054, 1999.
doi:10.1029/1999RS900053

31. Jaggard, D. L. and X. Sun, "Scattering from fractally corrugated surfaces," Journal of the Optical Society of American, Vol. 7, No. 6, 1055-1062, 1990.

32. Manninen, A. T., "Multiscale surface roughness and backscattering," Progress In Electromagnetic Research, Vol. 16, 175-203, 1997.
doi:10.2528/PIER96060700

33. Davidson, M. W. J., et al., "On the characterization of agricultural soil roughness for radar remote sensing studies," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, 630-640, 2000.
doi:10.1109/36.841993

34. Chan, C. H., L. Tsang, and Q. Li, "Monte Carlo simulation of large-scale one-dimenrional random surface scattering at neargrazing incidence: Penetrable case," IEEE Trans. on Anten. and Propagat., Vol. 46, No. 3, 142-149, 1998.
doi:10.1109/8.655461

35. Sancchez-Gil, J. A. and M. Nieto-Vesperinas, "Light scattering from random rough dielectric surface," Journal of the Optical Society of America A, Vol. 8, No. 8, 1270-1286, 1991.


© Copyright 2014 EMW Publishing. All Rights Reserved