PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 80 > pp. 123-160

HANDSET ANTENNA DESIGN: PRACTICE AND THEORY

By G. Wen, Q. Rao, S. M. Ali, and D. Wang

Full Article PDF (2,898 KB)

Abstract:
In this paper, an attempt is made to present a theory for the design of handset antennas, which results from the long experience that the authors have in the field of handset antenna design. The proposed theory is based on the well-known skin effect and constructs the antenna using a thin wire model that represent the backbone of the final antenna. The analytical solution for the thin wire model is first obtained, and the main properties (such as the return loss and the radiation properties) of the antenna can then be studied using this analytical solution. Once the antenna backbone is constructed, other elements, such as stubs, patches, etc., can be added to optimize the match at the desired frequency bands. A number of numerical and analytical examples are provided throughout the paper to validate the theory. Different antenna types, such as wire antennas and planar antennas, are tested and designed using the thin wire model. The correspondence between the analytical results and those from the numerical simulations using full-wave solvers agree very well in all examples. The authors also present in this paper a novel design of three small antennas for handset applications, which are based on the simple wire monopole, but in a three-dimensional form. The proposed three-dimensional monopole antennas have multi-band and broadband properties that cover most frequency bands being used for the handset device. The antennas feature remarkable properties while occupying a significantly small space, which makes them strong candidates for handset applications and for the future multi-antenna applications too. 1. INTRODUCTION

Citation:
G. Wen, Q. Rao, S. M. Ali, and D. Wang, "Handset antenna design: practice and theory," Progress In Electromagnetics Research, Vol. 80, 123-160, 2008.
doi:10.2528/PIER07111302
http://www.jpier.org/PIER/pier.php?paper=07111302

References:
1. Yacoub, M. D., Foundations of Mobile Radio Engineering, CRC Press, Boca Raton, 1993.

2. Lecuyer, C., Making Silicon Valley: Innovation and the Growth of High Tech., The MIT Press, Cambridge, MA, 2005.

3. Fujimoto, K. and J. R. James, Mobile Antenna Systems Handbook, Artech House, Norwood, MA, 2001.

4. Balanis, C. A., Antenna Theory: A review, Proceedings of the IEEE, Vol. 80, No. 1, 1992.

5. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley and Sons, Inc., Hoboken, NJ, 2005.

6. Wunsch, A. D., "A closed-form expression for the driving-point impedance of the small inverted-L antenna," IEEE Trans. on Antennas and Propag., Vol. 44, No. 2, 236-242, 1996.
doi:10.1109/8.481653

7. King, R. W. P., J. C. W. Harrison, and D. H. Denton, "Transmission line missile antennas," IRE Trans. on Antennas and Propag., Vol. 8, No. 1, 88-90, 1960.
doi:10.1109/TAP.1960.1144802

8. Taga, T. and K. Tsunekawa, "Performance analysis of a built-in inverted-F antenna for 800MHz band portable radio units," IEEE Journal on Selected Areas in Comm., Vol. 5, No. 5, 921-929, 1987.
doi:10.1109/JSAC.1987.1146593

9. Nakano, H., N. Ikeda, Y.-Y. Wu, R. Sukzuki, H. Mimaki, and J. Yamauchi, "Realization of dual-frequency and wide-band VSWR performance using normal-mode helical and inverted-F antennas," IEEE Trans. on Antennas and Propag., Vol. 46, No. 6, 788-793, 1998.
doi:10.1109/8.686763

10. Tag, T., Analysis, Design, and Measurement of Small and Lowprofile Antennas, Artech House Publishers, Boston, 1992.

11. Ebrahimi-Ganjeh, M. A. and A. R. Attari, "Interaction of dual band helical and PIFA handset antennas with human head and hand," Progress In Electromagnetics Research, Vol. 77, 225-242, 2007.
doi:10.2528/PIER07081804

12. Zhang, H.-T., Y.-Z. Yin, and X. Yang, "A wideband monopole with G type structure," Progress In Electromagnetics Research, Vol. 76, 229-236, 2007.
doi:10.2528/PIER07071004

13. Zhao, G., F.-S. Zhang, Y. Song, Z.-B. Weng, and Y.-C. Jiao, "Compact ring monopole antenna with double meander lines for 2.4/5 Ghz dual-band operation," Progress In Electromagnetics Research, Vol. 72, 187-194, 2007.
doi:10.2528/PIER07031405

14. Song, Y., Y.-C. Jiao, G. Zhao, and F.-S. Zhang, "Multiband CPW-FED triangle-shaped monopole antenna for wireless applications," Progress In Electromagnetics Research, Vol. 70, 329-336, 2007.
doi:10.2528/PIER07020201

15. Eldek, A., "Numerical analysis of a small ultra wideband microstrip-FED tap monopole antenna," Progress In Electromagnetics Research, Vol. 65, 59-69, 2006.
doi:10.2528/PIER06082305

16. Zaker, R., C. Ghobadi, and J. Nourinia, "A modified microstrip- FED two-step tapered monopole antenna for UWB and WLAN applications," Progress In Electromagnetics Research, Vol. 77, 137-148, 2007.
doi:10.2528/PIER07080701

17. Liu, Z. D., P. S. Hall, and D. Wake, "Dual-frequency planar inverted-F antenna," IEEE Trans. on Antennas and Propag., Vol. 45, No. 10, 1451-1457, 1997.
doi:10.1109/8.633849

18. Wong, K.-L. and K.-P. Yang, "Modified planar inverted-F antenna," Electronic Letters, Vol. 34, No. 1, 7-8, 1998.
doi:10.1049/el:19980102

19. Heald, M. A. and J. B. Marion, Classical Electromagnetic Radiation, 3rd edition, Saunders College Publishing, Orlando, FL, 1995.

20. FEKO(r) User Manual, Suite 5.3, Aug. 2006, and EM Software & Systems-S.A. (Pty) Ltd, 32 Techno Lane, Technopark.

21. Burke, G. J. and A. J. Poggio, "Numerical Electromagnetics Code (NEC) method of moments. Part III: User's guide," Lawrence Livermore National Laboratory, No. 1, 1981.

22. Geyi, W., Q. Rao, and M. Pecen, "Multi-band antenna apparatus disposed on a three dimensional substrate and associated methodology for a radio device," US Patent 32519.

23. Geyi, W., D. Wang, and M. Pecen, "Antenna and associated method for a multi-band radio device," US Patent 32524.

24. Geyi, W., S. M. Ali, and M. Pecen, "Multi-band antenna and associated methodology for a radio communication device," US Patent 32515.

25. Geyi, W., K. Bandurska, and P. Jarmuszewsk, "Antenna with multiple-band patch and slot structures," Patent no: US 7256741, 2007.

26. Geyi, W., P. Jarmuszewski, and A. Cooke, "Multiple-band antenna with shared slot structure," Patent no: US7239279, 2007.

27. Geyi, W., P. Jarmuszewsk, and A. Stevenson, "Multiple-band antenna with patch and slot structures," Patent no: US 7224312, 2007.

28. Geyi, W., P. Jarmuszewski, and A. Cooke, "Multiple-band antenna with shared slot structure," Patent no: US7151493, 2006.

29. Geyi, W., K. Bandurska, and P. Jarmuszewsk, "Antenna with multiple-band patch and slot structures," Patent no: US 7023387, 2006.

30. Schelkunoff, S. A., Antennas: Theory and Practice, John Wiley & Sons, Inc., 1952.

31. King, R. W. P., The Theory of Linear Antennas, Harvard University Press, Cambridge, MA, 1956.

32. Geyi, W., P. Jarmuszewski, and Y. Qi, "Foster reactance theorems for antennas and radiation Q," IEEE Trans. Antennas and Propagat, Vol. AP-48, No. 3, 401-408, 2000.
doi:10.1109/8.841901

33. Geyi, W., Calculation of element values of antenna equivalent circuit, Proc. ISAP2005, 1029-1032, 2005.

34. Geyi, W., "Physical limitations of antennas," IEEE Trans. on Antennas and Propagat., Vol. 51, 2116-2123, 2003.
doi:10.1109/TAP.2003.814754

35. Geyi, W., "A method for the evaluation of small antenna Q," IEEE Trans. Antennas and Propagat., Vol. AP-51, 2124-2129, 2003.
doi:10.1109/TAP.2003.814755

36. Geyi, W., Q. Rao, S. Ali, and M. Pecen, "Mobile wireless communications device with multiple RF transceivers using a common antenna at a same time and related methods," US patent 31351.

37. Geyi, W., Q. Rao, D. Wang, S. Ali, and M. Pecen, Compact multi-feed multi-band antenna designs for wireless mobile devices, IEEE Antennas & Propagation Society International Symposium Proceedings, No. 6, 1036-1039, 2007.

38. Elsadek, H. and D. Nashaat, "Ultra miniaturized E-shaped dual band PIFA on cheap foam and FR4 substrates," J. of Electromagn. Waves and Appl., Vol. 20, No. 3, 291-300, 2006.
doi:10.1163/156939306775701759

39. Kuo, L.-C., Y.-C. Kan, and H.-R. Chuang, "Analysis of a 900/1800MHz dual-band gap loop antenna on a handset with proximate head and hand model," J. of Electromagn. Waves and Appl., Vol. 21, No. 1, 107-122, 2007.
doi:10.1163/156939307779391722

40. Sim, C. Y. D., "A novel dual frequency PIFA design for ease of manufacturing," J. of Electromagn. Waves and Appl., Vol. 21, No. 3, 409-419, 2007.
doi:10.1163/156939307779367413

41. Kouveliotis, N. K., S. C. Panagiotou, P. K. Varlamos, and C. Capsalis, "Theoretical approach of the interaction between a human head model and a mobile handset helical antenna using numerical methods," Progress In Electromagnetics Research, Vol. 65, 309-327, 2006.
doi:10.2528/PIER06101901

42. Wang, Y. J. and C. K. Lee, "Compact and broadband microstrip patch antenna for the 3G IMT-2000 handsets applying styrofoam and shorting-posts," Progress In Electromagnetics Research, Vol. 47, 75-85, 2004.
doi:10.2528/PIER03100901

43. Wang, Y. J. and C. K. Lee, "Design of dual-frequency microstrip patch antennas and application for Imt-2000 mobile handsets," Progress In Electromagnetics Research, Vol. 36, 265-278, 2002.
doi:10.2528/PIER02022102

44. Su, D., D.-M. Fu, and D. Yu, "Genetic algorithms and method of moments for the design of PIFAs," Progress In Electromagnetics Research Letters, Vol. 1, 9-18, 2008.
doi:10.2528/PIERL07110603

45. Geyi, W., "New magnetic field integral equation for antenna system," Progress In Electromagnetics Research, Vol. 63, 153-170, 2006.
doi:10.2528/PIER06050201

46. Geyi, W., "Multi-antenna information theory," Progress In Electromagnetics Research, Vol. 75, 11-50, 2007.
doi:10.2528/PIER07052203


© Copyright 2014 EMW Publishing. All Rights Reserved