PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 83 > pp. 13-24

A NEW LINK-LEVEL SIMULATION PROCEDURE OF WIDEBAND MIMO RADIO CHANNEL FOR PERFORMANCE EVALUATION OF INDOOR WLANS

By M. G. Roozbahani, E. Jedari, and A. A. Shishegar

Full Article PDF (153 KB)

Abstract:
Inspired by the requirement of proper link simulation methods in performance analysis of communication systems, we present in this paper a recipe for channel implementation in simulation environments. Our focus here is the indoor applications of wireless local-area networks (WLANs). Specifically, we describe a procedure that beginning with statistical description of the channel impulse response leads to an efficient multi-input multi-output (MIMO) channel simulating method for arbitrary antenna configurations at both ends. A sample set of distributions for model parameters are also provided at the 5-GHz band, which is the operating frequency band of IEEE 802.11a, HIPERLAN/2, and the emerging IEEE 802.11n standards, and the corresponding software implementation of the simulator is addressed for public use.

Citation:
M. G. Roozbahani, E. Jedari, and A. A. Shishegar, "A new link-level simulation procedure of wideband MIMO radio channel for performance evaluation of indoor WLANs ," Progress In Electromagnetics Research, Vol. 83, 13-24, 2008.
doi:10.2528/PIER08040502
http://www.jpier.org/PIER/pier.php?paper=08040502

References:
1. Abouda, A. A. and S. G. Haggman, "Effect of mutual coupling on capacity of mimo wireless channels in high snr scenario," Progress In Electromagnetics Research, Vol. 65, 27-40, 2006.
doi:10.2528/PIER06072803

2. Abouda, A. A., H. M. El-Sallabi, and S. G. Haggman, "Effect of antenna array geometry and ula azimuthal orientation on mimo channel properties in urban city street grid," Progress In Electromagnetics Research, Vol. 64, 257-278, 2006.
doi:10.2528/PIER06050801

3. Noori, N. and H. Oraizi, "Evaluation of mimo channel capacity in indoor environments using vector parabolic equation method," Progress In Electromagnetics Research B, Vol. 4, 13-25, 2008.

4. Hu, C.-F., J.-D. Xu, N. Li, and L. Zhang, "Indoor accurate RCS measurement technique on UHF band," Progress In Electromagnetics Research, Vol. 81, 279-289, 2008.
doi:10.2528/PIER08011402

5. Xiao, S., J. Chen, B.-Z. Wang, and X.-F. Liu, "A numerical study on time-reversal electromagnetic wave for indoor ultra-wideband signal transmission," Progress In Electromagnetics Research, Vol. 77, 329-342, 2007.
doi:10.2528/PIER07082501

6. Martinez, D., F. Las-Heras, and R. G. Ayestaran, "Fast methods for evaluating the electric field level in 2D-indoor environments," Progress In Electromagnetics Research, Vol. 69, 247-255, 2007.
doi:10.2528/PIER06122105

7. Yarkoni, N. and N. Blaunstein, "Prediction of propagation characteristics in indoor radio communication environments," Progress In Electromagnetics Research, Vol. 59, 151-174, 2006.
doi:10.2528/PIER05090801

8. Talbi, L. and G. Y. Delisle, "Finite difference time domain characterization of indoor radio propagation," Progress In Electromagnetics Research, Vol. 12, 251-275, 1996.

9. Xu, H., D. Chizhik, H. Huang, and R. Valenzuela, "A generalized space-time multiple-input multiple-output (MIMO) channel model," IEEE Trans. Wireless Commun., Vol. 3, 966-975, 2004.
doi:10.1109/TWC.2004.827736

10. Weichselberger, W., M. Herdin, H. Ozcelik, and E. Bonek, "A stochastic MIMO channel model with joint correlation of both link ends," IEEE Trans. Wireless Commun., Vol. 5, 90-100, 2006.
doi:10.1109/TWC.2006.1576533

11. IEEE 802.11-03/940r4: TGn Channel Models, IEEE, [Online], Available: IEEE, , ftp://ieee:wireless@ftp.802wirelessworld.com/11/03/11-03-0940-02-000n-tgn-channel-models.doc.

12. Medbo, J. and P. Schramm, "Channel models for hiperlan/2 in different indoor scenarios," BRAN 3ERJ085B, 1998.

13. Steinbauer, M., et al., "The double-directional radio channel," IEEE Antennas Propagat. Mag., Vol. 43, 51-63, 2001.
doi:10.1109/74.951559

14. Saleh, A. and R. Valenzuela, "A statistical model for indoor multipath propagation," IEEE J. Select. Areas Commun., Vol. 5, 128-137, 1987.
doi:10.1109/JSAC.1987.1146527

15. Spencer, Q. H., et al., "Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel," IEEE J. Select. Areas Commun., Vol. 18, 347-359, 2000.
doi:10.1109/49.840194

16. Chong, C. C., et al., "A new statistical wideband spatio-temporal channel model for 5-GHz band WLAN systems," IEEE J. Select. Areas Commun., Vol. 21, 139-150, 2003.
doi:10.1109/JSAC.2002.807347

17. Zwick, T., C. Fischer, D. Didascalou, and W. Wiesbeck, "A stochastic spatial channel model based on wave-propagation modeling," IEEE J. Select. Areas Commun., Vol. 18, 6-15, 2000.
doi:10.1109/49.821698

18. Wallace, J. W., et al., "Modeling the indoor MIMO wireless channel," IEEE Trans. Antennas Propagation, Vol. 50, 591-599, 2002.
doi:10.1109/TAP.2002.1011224

19. Enayati, A. R., et al., "Reduced complexity maximum likelihood multiuser detection for OFDM-based IEEE 802.11a WLANs utilizing post-FFT mode," Proceedings of the IEEE PIMRC'06, 2006.


© Copyright 2014 EMW Publishing. All Rights Reserved