PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 84 > pp. 407-436

APPLICATION OF ARTIFICIAL GROUND PLANES IN DUAL-BAND ORTHOGONALLY-POLARIZED LOW-PROFILE HIGH-GAIN PLANAR ANTENNA DESIGN

By A. Foroozesh, M. N. M. Kehn, and L. Shafai

Full Article PDF (344 KB)

Abstract:
Application of artificial ground planes in design of compact cavity-resonance dual-band high-gain antennas is presented. The artificial ground plane consists of periodic strip grating on grounded dielectric slab. A code based on method of moment (MoM) is developed to analyze and design such artificial ground planes. The reflection parameters obtained using the MoM code are employed to characterize the surface impedance of the artificial ground plane for different incident angles and both TE and TM polarizations. Then, this impedance surface is used in transverse equivalent network (TEN) model of the cavity-resonance antenna with high-permittivity dielectric superstrate. Using TEN model radiation properties of such antennas are analyzed. Finally, the antenna with the compact size is designed to demonstrate the maximum directivity. An interesting characteristic of this antennas is that when the antenna ground plane acts as an artificial magnetic conductor the height of the antenna is almost reduced by a factor of two, while its directivity is increased by about 1 dB compared to the conventional antennas of this class having PEC ground plane.

Citation:
A. Foroozesh, M. N. M. Kehn, and L. Shafai, "Application of artificial ground planes in dual-band orthogonally-polarized low-profile high-gain planar antenna design," Progress In Electromagnetics Research, Vol. 84, 407-436, 2008.
doi:10.2528/PIER08062804
http://www.jpier.org/PIER/pier.php?paper=08062804

References:
1. Kildal, P.-S., A. A. Kishk, and S. Maci, "Special issue on artificial magnetic conductors, soft/hard surfaces, and other complex surfaces," IEEE Trans. on Antennas and Propagat., Vol. 53, 2005.
doi:10.1109/TAP.2004.841530

2. Feresidis, A., G. Goussetis, S. Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas," IEEE Trans. on Antennas and Propagat., Vol. 53, 209-215, 2005.
doi:10.1109/TAP.2004.840528

3. Wang, S., A. P. Feresidis, G. Goussetis, and J. C. Vardaxoglou, "High-gain subwavelength resonant cavity antennas based on metamaterial ground planes," IEE Proc. --- Microw. Antennas Propag., Vol. 153, No. 1, 1-6, 2006.
doi:10.1049/ip-map:20050090

4. Foroozesh, A. and L. Shafai, 2-D truncated periodic leaky-wave antennas with reactive impedance surface ground planes, Proc. IEEE Int. Symp., 15-18, Albuquerque, NM, 2006.

5. Foroozesh, A. and L. Shafai, Size reduction in the high gain antennas with dielectric superstrate using artificial magnetic conductors, Proc. ANTEM/URSI Int’l Symp., 523-526, Montreal, QC, 2006.

6. Foroozesh, A. and L. Shafai, Size reduction of a microstrip antenna with dielectric superstrate using meta-materials: Artificial magnetic conductors versus magneto-dielectrics, Proc. IEEE Int. Symp., 11-14, Albuquerque, NM, 2006.

7. Pirhadi, A., M. Hakkak, and F. Keshmiri, "Using electromagnetic bandgap superstrate to enhance the bandwidth of probe-fed microstrip antenna," Progress In Electromagnetics Research, Vol. 61, 215-230, 2006.
doi:10.2528/PIER06021801

8. Pirhadi, A., F. Keshmiri, M. Hakkak, and M. Tayarani, "Analysis and design of dual band high directivity EBG resonator antenna using square loop FSS as superstrate layer," Progress In Electromagnetics Research, Vol. 70, 1-20, 2007.
doi:10.2528/PIER07010201

9. Jackson, D. R. and N. G. Alexopoulos, "Gain enhancement methods for printed circuit antennas," IEEE Trans. on Antennas and Propagat., Vol. 33, 976-987, 1985.
doi:10.1109/TAP.1985.1143709

10. Alexopoulos, N. G. and D. R. Jackson, "Fundamental superstrate (cover) effects on printed circuit antennas," IEEE Trans. on Antennas and Propagat., Vol. 32, 807-816, 1984.
doi:10.1109/TAP.1984.1143433

11. Yang, H. Y. and N. G. Alexopoulos, "Gain enhancement methods for printed circuit antennas through multiple superstrates," IEEE Trans. on Antennas and Propagat., Vol. 35, 860-863, 1987.
doi:10.1109/TAP.1987.1144186

12. Wu, X. H., A. A. Kishk, and A W. Glisson, "A transmission line method to compute the far-field radiation of arbitrarily directed Hertzian dipoles in multilayer dielectric structure: Theory and applications," IEEE Trans. on Antennas and Propagat., Vol. 54, 2731-2741, 2006.
doi:10.1109/TAP.2006.882164

13. Zhao, T., D. R. Jackson, J. T. Williams, H. Y. Yang, and A. A. Oliner, "2-D periodic leaky-wave antennas. Part I: Metal patch design," IEEE Trans. on Antennas and Propagat., Vol. 53, 3505-3514, 2005.
doi:10.1109/TAP.2005.858579

14. Zhao, T., D. R. Jackson, and J. T. Williams, "2-D periodic leakywave antennas. Part II: Slot design," IEEE Trans. on Antennas and Propagat., Vol. 53, 3515-3524, 2005.
doi:10.1109/TAP.2005.858580

15. Zhao, T., D. R. Jackson, J. T. Williams, and A. A. Oliner, "General formulas for 2-D leaky-wave antennas," IEEE Trans. on Antennas and Propagat., Vol. 53, 3525-3533, 2005.
doi:10.1109/TAP.2005.856315

16. Jackson, D. R. and A. A. Oliner, "A leaky-wave analysis of the high-gain printed antenna configuration," IEEE Trans. on Antennas and Propagat., Vol. 36, 905-910, 1988.
doi:10.1109/8.7194

17. Pirhadi, A. and M. Hakkak, "An analytical investigation of the radiation characteristics of infinitesimal dipole antenna embedded in partially reflective surfaces to obtain high directivity," Progress In Electromagnetics Research, Vol. 65, 137-155, 2006.
doi:10.2528/PIER06081501

18. Semichaevsky, A. and A. Akuyrtlu, "Homogenization of metamaterial-loaded substrates and superstrates for antennas," Progress In Electromagnetics Research, Vol. 71, 129-147, 2007.
doi:10.2528/PIER07021001

19. Uchida, K., T. Noda, and T. Matsunaga, "Spectral domain analysis of electromagnetic wave scattering by an infinite metallic grating," IEEE Trans. on Antennas and Propagat., Vol. 35, 46-52, 1987.
doi:10.1109/TAP.1987.1143973

20. Lee, C.-W. and H. Son, "Analysis of electromagnetic scattering by periodic strip grating on a grounded dielectric/magnetic slab for arbitrary plane wave incidence case," IEEE Trans. on Antennas and Propagat., Vol. 47, 1386-1392, 1999.

21. Khalaj-Amirhosseini, M., "Scattering of inhomegenous two-dimensional periodic dielectric gratings," Progress In Electromagnetics Research, Vol. 60, 165-177, 2006.
doi:10.2528/PIER05112601

22. Watanabe, K. and K. Yasumoto, "Two-dimensional electromagnetic scattering of non-plane incident waves by periodic structures," Progress In Electromagnetics Research, Vol. 74, 241-271, 2007.
doi:10.2528/PIER07050902

23. Zheng, G., A. A. Kishk, A. W. Glisson, and A. B. Yakovlev, "A novel implementation of Maxwell’s equations in the periodic finite-difference time-domain method," Progress In Electromagnetics Research, Vol. 59, 85-100, 2006.
doi:10.2528/PIER05092601

24. Zheng, G., A. A. Kishk, A. W. Glisson, and A. B. Yakovlev, "Implementation of MUR’s absorbing boundaries with periodic structures to speed up the design process using finite-difference time-domain method," Progress In Electromagnetics Research, Vol. 58, 101-114, 2006.
doi:10.2528/PIER05062103

25. Matsushima, A., Y. Momoka, M. Ohtsu, and Y. Okuno, "Efficient numerical approach to electromagnetic scattering from three-dimensional periodic array of dielectric spheres using sequantial accumulation," Progress In Electromagnetics Research, Vol. 69, 305-322, 2007.
doi:10.2528/PIER06123002

26. Dalili Oskouei, H., K. Forooraghi, and M. Hakkak, "Guided and leaky wave characteristics of periodic defected ground structures," Progress In Electromagnetics Research, Vol. 73, 15-27, 2007.
doi:10.2528/PIER07031701

27. Edalati, A., H. Boutayeb, and T. Denidni, "Band structure analysis of reconfigurable metallic crystals: Effect of active element," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2421-2430, 2007.
doi:10.1163/156939307783134245

28. Butler, C. M., "General solutions of the narrow strip (and slot) integral equations," IEEE Trans. on Antennas and Propagat., Vol. 35, 1085-1090, 1985.
doi:10.1109/TAP.1985.1143500

29. Sipus, Z., P.-S. Kildal, R. Leijon, and M. Johansson, "An algorithm for calculating Green’s functions of planar, circular cylindrical and spherical multilayer substrates," Applied Computational Electromagnetics Society (ACES) J., Vol. 13, No. 3, 243-254, 1998.

30. Ng Mou Kehn, M., M. Nannetti, A. Cucini, S. Maci, and P.-S. Kildal, "Analysis of dispersion in dipole-FSS loaded hard rectangular waveguide," IEEE Trans. on Antennas and Propagat., Vol. 54, 2275-2282, 2006.
doi:10.1109/TAP.2006.879198

31. Foroozesh, A. and L. Shafai, Investigation of reflection properties of reactive impedance substrates, Proc. CCECE Int. Symp., 1881-1884, Saskatoon, SA, 2005.

32. Munk, B., Frequency Selective Surface: Theory and Design, John Wiley & Sons, Inc., New York, 2000.

33. Foroozesh, A. and L. Shafai, Effects of the excitation source position on the radiation characteristics of the antennas with a cover layer: A few case studies, Proc. IEEE Int. Symp., 1507-1510, Albuquerque, NM, 2006.


© Copyright 2014 EMW Publishing. All Rights Reserved