1. Iskander, M. F. and Z. Yun, "Propagation prediction models for wireless communication systems," Transactions on Microwave Theory and Techniques, Vol. 50, 662-673, 2002.
doi:10.1109/22.989951 Google Scholar
2. Seidel, S. Y. and T. S. Rappaport, "Site-specific propagation prediction for wireless in-building personal communication system design," IEEE Transactions on Vehicular Technology, Vol. 43, 879-891, 1994.
doi:10.1109/25.330150 Google Scholar
3. Corazza, G. E., V. Degli-Esposti, M. Frullone, and G. Riva, "A characterization of indoor space and frequency diversity by ray-tracing modeling," IEEE Journal on Selected Areas in Communications, Vol. 14, 411-419, 1996.
doi:10.1109/49.490226 Google Scholar
4. Yang, C., B. Wu, and C. Ko, "A ray-tracing method for modeling indoor wave propagation and penetration," IEEE Transactions on Antennas and Propagation, Vol. 46, 907-919, 1998.
doi:10.1109/8.686780 Google Scholar
5. Liang, G. and H. L. Bertoni, "A new approach to 3D ray tracing for propagation in cities," IEEE Transactions on Antennas and Propagation, Vol. 46, 853-863, 1998.
doi:10.1109/8.686774 Google Scholar
6. Zhang, Z., K. R. Soresen, Z. Yun, M. F. Iskander, and J. F. Harvey, "A ray-tracing approach for indoor/outdoor propagation through window structures," IEEE Transactions on Antennas and Propagation, Vol. 50, 742-748, 2002.
doi:10.1109/TAP.2002.1011242 Google Scholar
7. Kara, A. and E. Yazgan, "Modelling of shadowing loss due to huge non-polygonal structures in urban radio propagation," Progress In Electromagnetics Research B, Vol. 6, 123-134, 2008.
doi:10.2528/PIERB08031209 Google Scholar
8. Wang, N., Y. Zhang, and C. H. Liang, "Creeping ray-tracing algorithm of UTD method based on NURBS models with the source on surface," Journal of Electromagnetics Waves and Applications, Vol. 20, No. 14, 1981-1990, 2006.
doi:10.1163/156939306779322602 Google Scholar
9. Liang, C., Z. Liu, and H. Di, "Study on the blockage of electromagnetic rays analytically," Progress In Electromagnetics Research B, Vol. 1, 253-268, 2008.
doi:10.2528/PIERB07102902 Google Scholar
10. Blas, J., F. A. Lago, P. Fernandez, R. M. Lorenzo, and E. J. Abril, "Potential exposure assessment errors associated with body-worn RF dosimeters," Bioelectromagnetics, Vol. 28, 573-576, 2007.
doi:10.1002/bem.20355 Google Scholar
11. Wang, M. Y., J. Xu, J. Wu, Y. B. Yan, and H. L. Li, "FDTD study on scattering of metallic column covered by doublenegative metamaterial," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1905-1914, 2007.
doi:10.1163/156939307783152777 Google Scholar
12. Lee, F. W. H. and A. K. Y. Lai, "FDTD analysis of indoor radio propagation," IEEE International Symposium on Antennas and Propagation Society, Vol. 13, 1664-1667, 1998. Google Scholar
13. Pahlavan, K. and A. H. Levesque, Wireless Information Networks, Wiley Series in Telecommunications and Signal Processing, Wiley, 1995.
14. Talbi, L. and G. Y. Delisle, "Finite difference time domain characterization of indoor radio propagation," Progress In Electromagnetics Research, Vol. 12, 251-275, 1996.
doi:10.1163/156939307783239410 Google Scholar
15. Ali, M. and S. Sanyal, "A numerical investigation of finite ground planes and reflector effects on monopole antenna factor," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 10, 1379-1392, 2007.
doi:10.1163/156939306775777224 Google Scholar
16. Uduwawala, D., "Modeling and investigation of planar parabolic dipoles for GPR applications: A comparison with bow-tie using FDTD," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 2, 227-236, 2006.
doi:10.1163/156939306775777224 Google Scholar
17. Golestani-Rad, L., J. Rashed-Mohassel, and M. M. Danaie, "Rigorous analysis of EM-wave penetration into a typical room using FDTD method: The Transfer Function concept," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 913-926, 2006.
doi:10.1163/156939306776149851 Google Scholar
18. Wang, Y., S. Safavi-Naeini, and S. K. Chaundhuri, "A hybrid technique based on combining ray tracing and FDTD methods for site-specific modeling of indoor radio wave propagation," IEEE Transactions on Antennas and Propagation, Vol. 48, 743-754, 2000.
doi:10.1109/8.855493 Google Scholar
19. Bernardi, P., M. Cavagnaro, S. Pisa, and E. Piuzzi, "Human exposure to radio base-station antennas in urban environment," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, 1996-2002, 2000.
doi:10.1109/22.848494 Google Scholar
20. Bernardi, P., M. Cavagnaro, P. D'Atanasio, E. Di Palma, S. Pisa, and E. Piuzzi, "FDTD, multiple-region/FDTD, raytracing/ FDTD," International Journal of Numerical Modelling, Vol. 15, 579-593, 2002.
doi:10.1002/jnm.470 Google Scholar
21. Bernardi, P., M. Cavagnaro, R. Ceccetti, S. Pisa, E. Piuzzi, and O. Testa, "A UTD/FDTD investigation on procedures to assess compliance of cellular base-station antennas with human-humanexposure," Transactions on Microwave Theory and Techniques, Vol. 51, 2109-2417, 2003. Google Scholar
22. Martınez-Burdalo, M., A. Martın, V. Pizarro, and R. Villar, "An efficient FDTD-time-domain equivalent currents method for safety assessment in human exposure to base-station antennas in presence of obstacles," Microwave and Optical Technology Letters, Vol. 48, 1987-1990, 2006.
doi:10.1002/mop.21818 Google Scholar
23. Simthson, A. G. and I. A. Glover, "Prediction of attenuation and delay-spread for systems with outdoor basestations and indoor users," Proceedings of the 9th European Conference on Wireless Technology, 265-268, 2006.
doi:10.1109/ECWT.2006.280487 Google Scholar
24. Noori, N. and H. Oraizi, "Evaluation of MIMO channel capacity in indoor environments using vector parabolic equation method," Progress In Electromagnetics Research B, Vol. 4, 13-25, 2008.
doi:10.2528/PIERB07121903 Google Scholar
25. Guo, S. X., Y. Gao, and L. X. Zhang, "Simulation research on turbo equlization algorithm based on microwave fading channel," PIER Letters, Vol. 4, 99-107, 2008. Google Scholar
26. Wu, B. I., F. C. A. I. Cox, and J. A. Kong, "Experimental methodology for non-thermal effects of electromagnetic radiation on biologics," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 4, 533-548, 2007.
doi:10.1163/156939307780616829 Google Scholar
27. Lee, S. H. and R. C. Rudduck, "Aperture integration and GTD techniques used in the NEC reflector antenna code," IEEE Transactions on Antennas and Propagation, Vol. 33, 189-194, 1985. Google Scholar
28. Teh, C. H., F. Kung, and H. T. Chuah, "A path-corrected wall model for ray-tracing propagation modeling," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 2, 207-214, 2006.
doi:10.1163/156939306775777288 Google Scholar
29. Blas, J., A. Bahillo, S. Mazuelas, D. Bullido, P. Fernandez, R. M. Lorenzo, and E. J. Abril, "Scanning device for sampling the spatial distribution of the E-field," Proceedings of World Academy of Science, Engineering and Technology, Vol. 14, 199-203, 2007. Google Scholar
30. Helhel, S., S. Ozen, and H. Goksu, "Investigation of GSM signal variation depending weather conditions," Progress In Electromagnetics Research B, Vol. 1, 147-157, 2008.
doi:10.2528/PIERB07101503 Google Scholar
31. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, 2nd Ed., Cambridge University Press, 1992.
32. Horikoshi, J., D. Tanaka, and T. Morinaga, "1.2 GHz band wave propagation measurements in concrete building for indoor radio communications," IEEE Transactions on Vehicular Technoloty, Vol. 35, 146-152, 1986.
doi:10.1109/T-VT.1986.24084 Google Scholar