PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 88 > pp. 227-240

A SIMPLE ALTERNATIVE FOR BEAM RECONFIGURATION OF ARRAY ANTENNAS

By F. J. Ares-Pena, G. Franceschetti, and J. A. Rodriguez

Full Article PDF (710 KB)

Abstract:
An innovative method for antenna arrays beam configuration is presented. In the proposed method, every element of the array is connected to its feed through a switch, so that it can be active or passive, depending on the switch position. Pattern reconfigurability is achieved by appropriately switching on or off the array elements. The optimal configuration of the switches for each of the radiated patterns, as well the common voltages of the active elements, is calculated by using a genetic algorithm. For each configuration, the currents in the driven and parasitic elements are determined, via their self and mutual impedances, by inversion of the impedance matrix. In the presented examples, the method has been applied to both linear and planar arrays of parallel dipoles that switch the power pattern from a pencil to a flat-topped beam (linear array) or to a footprint pattern (planar array).

Citation:
F. J. Ares-Pena, G. Franceschetti, and J. A. Rodriguez, "A simple alternative for beam reconfiguration of array antennas," Progress In Electromagnetics Research, Vol. 88, 227-240, 2008.
doi:10.2528/PIER08110303
http://www.jpier.org/PIER/pier.php?paper=08110303

References:
1. Bucci, O. M., G. Mazzarella, and G. Panariello, "Reconfigurable arrays by phase-only control," IEEE Trans. Antennas Propagat., Vol. 39, No. 7, 919-925, 1991.
doi:10.1109/8.86910

2. Durr, M., A. Trastoy, and F. Ares, "Multiple pattern linear antenna arrays with single prefixed amplitude distributions: Modified Woodward-Lawson synthesis," Electron. Lett., Vol. 36, No. 16, 1345-1346, 2000.
doi:10.1049/el:20000980

3. Dıaz, X., J. A. Rodrıguez, F. Ares, and E. Moreno, "Design of phase-differentiated multiple-pattern antenna arrays," Microw. Opt. Technol. Lett., Vol. 16, No. 1, 52-53, 2000.

4. Bregains, J. C., A. Trastoy, F. Ares, and E. Moreno, "Synthesis of multiple-pattern planar antenna arrays with single prefixed or jointly optimised amplitude distributions," Microw. Opt. Technol. Lett., Vol. 32, No. 1, 74-78, 2002.
doi:10.1002/mop.10094

5. Trastoy, A., Y. Rahmat-Samii, F. Ares, and E. Moreno, "Two pattern linear array antenna: Synthesis and analysis of tolerance," IEE Proc. Microw. Antennas Propagat., Vol. 151, No. 2, 127-130, 2004.
doi:10.1049/ip-map:20040175

6. Mahanti, G. K., A. Chakraborty, and S. Das, "Design of fully digital controlled reconfigurable array antennas with fixed dynamic range ratio," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 1, 97-106, 2007.
doi:10.1163/156939307779391768

7. Akdagli, A., K. Guney, and B. Babayigit, "Clonal selection algorithm for design of reconfigurable antenna array with discrete phase shifters," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 2, 215-227, 2007.
doi:10.1163/156939307779378808

8. Vaitheeswaran, S. M., "Dual beam synthesis using element position perturbations and the G3-GA algorithm," Progress In Electromagnetics Research, Vol. 87, 43-61, 2008.
doi:10.2528/PIER08091601

9. Rodrıguez, J. A., A. Trastoy, C. Bregains Julio, F. Ares, and G. Franceschetti, "Beam reconfiguration of linear arrays by using parasitic elements," Electron. Lett., Vol. 52, No. 3, 131-133, 2006.
doi:10.1049/el:20063674

10. Yuan, H. W., S. X. Gong, P. F. Zhang, and X. Wang, "Wide scanning phased array antenna using printed dipole antennas with parasitic element," Progress In Electromagnetics Research Letters, Vol. 2, 187-193, 2008.
doi:10.2528/PIERL08011602

11. EM Software & Systems-S., A., FEKO User's Manual Suite 5.1, EMSS, 2005.

12. Elliott, R. S., Antenna Theory and Design, Revised Ed., John Wiley and Sons, Inc., Hoboken, New Jersey, 2003.

13. Xi, Y. P., D. G. Fang, Y. X. Sun, and Y. L. Chow, "Mutual coupling in a linear dipole array of finite size," IEE Proc. Microw. Antennas Propagat., Vol. 152, No. 5, 324-330, 2005.
doi:10.1049/ip-map:20045081

14. Hunter, A., SUGAL Genetic Algorithm Package v. 2.1, University of Sunderland, England, England.

15. Su, D. Y., D. M. Fu, and D. Yu, "Genetic algorithms and method of moments for the design of PIFAs," Progress In Electromagnetics Research Letters, Vol. 1, 9-18, 2008.
doi:10.2528/PIERL07110603

16. Razavi, S. M. J. and M. Khalaj-Amirhosseini, "Optimization an anechoic chamber with ray-tracing and genetic algorithms," Progress In Electromagnetics Research B, Vol. 9, 53-68, 2008.
doi:10.2528/PIERB08062902

17. Ngo Nyobe, E. and E. Pemha, "Shape optimization using genetic algorithms and laser beam propagation for the determination of the diffusion coefficient in a hot turbulent jet of air," Progress In Electromagnetics Research B, Vol. 4, 211-221, 2008.
doi:10.2528/PIERB08010605

18. Liu, B., L. Beghou, and L. Pichon, "Adaptive genetic algorithm based source identification with near-field scanning method," Progress In Electromagnetics Research B, Vol. 9, 215-230, 2008.
doi:10.2528/PIERB08070904

19. Chen, H. T., G. Q. Zhu, and S. Y. He, "Using genetic algorithm to reduce the radar cross section of three-dimensional anisotropic impedance object," Progress In Electromagnetics Research B, Vol. 9, 231-248, 2008.
doi:10.2528/PIERB08080202

20. Cheng, D., "Reconfigurable patch antenna apparatus, systems, and methods," Patent application US7403172, 2008.


© Copyright 2014 EMW Publishing. All Rights Reserved