Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 89 > pp. 135-148


By G. Xie, M. Suzuki, D. V. Louzguine-Luzgin, S. Li, M. Tanaka, M. Sato, and A. Inoue

Full Article PDF (2,494 KB)

The electromagnetic field distributions in the waveguide of a 915 MHz single-mode microwave sintering applicator equipped with a loading pressure system were simulated using a JMAG-Studio program. The disturbance in the magnetic field as well as in electric field was caused by the insertion of the alumina loading pressure system due to reflection effect of alumina. However, the separated magnetic field and electric field maxima can be obtained by adjusting position of the alumina loading pressure system in the waveguide. The simulation results were evaluated by comparison with experimental measurement.

G. Xie, M. Suzuki, D. V. Louzguine-Luzgin, S. Li, M. Tanaka, M. Sato, and A. Inoue, "Analysis of electromagnetic field distributions in a 915 MHz single-mode microwave applicator," Progress In Electromagnetics Research, Vol. 89, 135-148, 2009.

1. Bykov, Y. V., K. I. Rybakov, and V. E. Semenov, "High-temperature microwave processing of materials," J. Phys. D: Appl. Phys., Vol. 34, R55-R75, 2001.

2. Clark, D. and W. H. Sutton, "Microwave processing of materials," Annu. Rev. Mater. Sci., Vol. 26, 299-331, 1996.

3. Katz, J. D., "Microwave sintering of ceramics," Annu. Rev. Mater. Sci., Vol. 22, 153-170, 1992.

4. Akyel, C. and E. Bilgen, "Microwave and radio-frequency curing of polymers: Energy requirements, cost and market penetration," Energy, Vol. 14, No. 12, 839-851, 1989.

5. Chabinsky, I. J., "Practical applications of microwave energy in the rubber industry," Elastomerics, Vol. 115, No. 1, 17-20, 1983.

6. Roy, R., D. Agrawal, J. P. Cheng, and S. Gedevanishvili, "Full sintering of powdered-metal bodies in a microwave field," Nature, Vol. 399, 668-670, 1999.

7. Anklekar, R. M., K. Bauer, D. Agrawal, and R. Roy, "Improved mechanical properties and microstructural development of microwave sintered copper and nickel steel PM parts," Powder Metall., Vol. 48, No. 1, 39-46, 2005.

8. Roy, R., R. Peelamedu, L. Hurtt, J. P. Cheng, and D. Agrawal, "Definitive experimental evidence for microwave effects: Radically new effects of separated E and H fields, such as decrystallization of oxides in seconds," Mater. Res. Innovat., Vol. 6, No. 3, 128-140, 2002.

9. Yoshikawa, N., E. Ishizuka, and S. Taniguchi, "Heating of metal particles in a single-mode microwave applicator," Mater. Trans., Vol. 48, No. 3, 898-902, 2006.

10. Buchelnikov, V. D., D. V. Louzguine-Luzgin, G. Q. Xie, S. Li, N. Yoshikawa, M. Sato, A. P. Anzulevich, I. V. Bychkov, and A. Inoue, "Heating of metallic powders by microwaves: Experiment and theory," J. Appl. Phys., Vol. 104, 113505, 2008.

11. Anklekar, R. M., D. Agrawal, and R. Roy, "Microwave sintering and mechanical properties of PM copper steel," Powder Metall., Vol. 44, No. 4, 355-362, 2001.

12. Rybakov, K. I., V. E. Semenov, S. V. Egorov, A. G. Eremeev, I. V. Plotnikov, and Y. V. Bykov, "Microwave heating of conductive powder materials," J. Appl. Phys., Vol. 99, 023506, 2006.

13. Upadhyaya, A., S. K. Tiwari, and P. Mishra, "Microwave sintering of W-Ni-Fe alloy," Scripta Mater., Vol. 56, No. 1, 5-8, 2007.

14. Yoshikawa, N., D. V. Louzguine-Luzgin, K. Mashiko, G. Q. Xie, M. Sato, A. Inoue, and S. Taniguchi, "Microstructural changes during microwave heating of Ni52.5Zr15Nb10Ti15Pt7.5 metal glasses," Mater. Trans., Vol. 48, No. 3, 632-634, 2007.

15. Xie, G. Q., S. Li, D. V. Louzguine-Luzgin, Z. P. Cao, N. Yoshikawa, M. Sato, and A. Inoue, "Effect of Sn on microwave-induced heating and sintering of Ni-based metallic glassy alloy powders," Intermetallics, doi:10.1016/j.internet.2008.08 016.

16. Li, S., G. Q. Xie, D. V. Louzguine-Luzgin, Z. P. Cao, N. Yoshikawa, M. Sato, and A. Inoue, "Microwave sintering of Ni-based bulk metallic glass matrix composite in a single-mode applicator," Mater. Trans., Vol. 49, No. 12, 2850-2853, 2008.

17. Xie, G. Q., S. Li, D. V. Louzguine-Luzgin, Z. P. Cao, N. Yoshikawa, M. Sato, and A. Inoue, "Microwave-induced sintering of NiNbTiPt metallic glass blended with Sn powders using a single-mode applicator," J. Phys.: Conference Series, 2009 (in press).

18. Cheng, J. P., R. Roy, and D. Agrawal, "Experimental proof of major role of magnetic field losses in microwave heating of metal and metallic composites," J. Mater. Sci. Lett., Vol. 20, No. 17, 1561-1563, 2001.

19. Breeze, J. D., X. Aupi, and N. M. Alford, "Ultralow loss polycrystalline alumina," Appl. Phys. Lett., Vol. 81, No. 26, 5021-5023, 2002.

20. Louzguine-Luzgin, D. V., G. Q. Xie, S. Li, A. Inoue, N. Yoshikawa, and M. Sato, "Microwave-induced heating of a single glassy phase and a two-phase material consisting of a metallic glass and Fe powder," Phil. Mag. Lett., 2009 (in press).

© Copyright 2014 EMW Publishing. All Rights Reserved