Vol. 89

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2009-01-12

Analysis of Electromagnetic Field Distributions in a 915 MHz Single-Mode Microwave Applicator

By Guoqiang Xie, Motoharu Suzuki, Dmitri V. Louzguine-Luzgin, Song Li, Motohiko Tanaka, Motoyasu Sato, and Akihisa Inoue
Progress In Electromagnetics Research, Vol. 89, 135-148, 2009
doi:10.2528/PIER08120808

Abstract

The electromagnetic field distributions in the waveguide of a 915 MHz single-mode microwave sintering applicator equipped with a loading pressure system were simulated using a JMAG-Studio program. The disturbance in the magnetic field as well as in electric field was caused by the insertion of the alumina loading pressure system due to reflection effect of alumina. However, the separated magnetic field and electric field maxima can be obtained by adjusting position of the alumina loading pressure system in the waveguide. The simulation results were evaluated by comparison with experimental measurement.

Citation


Guoqiang Xie, Motoharu Suzuki, Dmitri V. Louzguine-Luzgin, Song Li, Motohiko Tanaka, Motoyasu Sato, and Akihisa Inoue, "Analysis of Electromagnetic Field Distributions in a 915 MHz Single-Mode Microwave Applicator," Progress In Electromagnetics Research, Vol. 89, 135-148, 2009.
doi:10.2528/PIER08120808
http://www.jpier.org/PIER/pier.php?paper=08120808

References


    1. Bykov, Y. V., K. I. Rybakov, and V. E. Semenov, "High-temperature microwave processing of materials," J. Phys. D: Appl. Phys., Vol. 34, R55-R75, 2001.
    doi:10.1088/0022-3727/34/13/201

    2. Clark, D. and W. H. Sutton, "Microwave processing of materials," Annu. Rev. Mater. Sci., Vol. 26, 299-331, 1996.

    3. Katz, J. D., "Microwave sintering of ceramics," Annu. Rev. Mater. Sci., Vol. 22, 153-170, 1992.

    4. Akyel, C. and E. Bilgen, "Microwave and radio-frequency curing of polymers: Energy requirements, cost and market penetration," Energy, Vol. 14, No. 12, 839-851, 1989.
    doi:10.1016/0360-5442(89)90038-8

    5. Chabinsky, I. J., "Practical applications of microwave energy in the rubber industry," Elastomerics, Vol. 115, No. 1, 17-20, 1983.

    6. Roy, R., D. Agrawal, J. P. Cheng, and S. Gedevanishvili, "Full sintering of powdered-metal bodies in a microwave field," Nature, Vol. 399, 668-670, 1999.

    7. Anklekar, R. M., K. Bauer, D. Agrawal, and R. Roy, "Improved mechanical properties and microstructural development of microwave sintered copper and nickel steel PM parts," Powder Metall., Vol. 48, No. 1, 39-46, 2005.
    doi:10.1179/003258905X37657

    8. Roy, R., R. Peelamedu, L. Hurtt, J. P. Cheng, and D. Agrawal, "Definitive experimental evidence for microwave effects: Radically new effects of separated E and H fields, such as decrystallization of oxides in seconds," Mater. Res. Innovat., Vol. 6, No. 3, 128-140, 2002.
    doi:10.1007/s10019-002-0199-x

    9. Yoshikawa, N., E. Ishizuka, and S. Taniguchi, "Heating of metal particles in a single-mode microwave applicator," Mater. Trans., Vol. 48, No. 3, 898-902, 2006.
    doi:10.2320/matertrans.47.898

    10. Buchelnikov, V. D., D. V. Louzguine-Luzgin, G. Q. Xie, S. Li, N. Yoshikawa, M. Sato, A. P. Anzulevich, I. V. Bychkov, and A. Inoue, "Heating of metallic powders by microwaves: Experiment and theory," J. Appl. Phys., Vol. 104, 113505, 2008.
    doi:10.1063/1.3009677

    11. Anklekar, R. M., D. Agrawal, and R. Roy, "Microwave sintering and mechanical properties of PM copper steel," Powder Metall., Vol. 44, No. 4, 355-362, 2001.
    doi:10.1179/003258901666536

    12. Rybakov, K. I., V. E. Semenov, S. V. Egorov, A. G. Eremeev, I. V. Plotnikov, and Y. V. Bykov, "Microwave heating of conductive powder materials," J. Appl. Phys., Vol. 99, 023506, 2006.
    doi:10.1063/1.2159078

    13. Upadhyaya, A., S. K. Tiwari, and P. Mishra, "Microwave sintering of W-Ni-Fe alloy," Scripta Mater., Vol. 56, No. 1, 5-8, 2007.
    doi:10.1016/j.scriptamat.2006.09.010

    14. Yoshikawa, N., D. V. Louzguine-Luzgin, K. Mashiko, G. Q. Xie, M. Sato, A. Inoue, and S. Taniguchi, "Microstructural changes during microwave heating of Ni52.5Zr15Nb10Ti15Pt7.5 metal glasses," Mater. Trans., Vol. 48, No. 3, 632-634, 2007.
    doi:10.2320/matertrans.48.632

    15. Xie, G. Q., S. Li, D. V. Louzguine-Luzgin, Z. P. Cao, N. Yoshikawa, M. Sato, and A. Inoue, "Effect of Sn on microwave-induced heating and sintering of Ni-based metallic glassy alloy powders," Intermetallics, doi:10.1016/j.internet.2008.08 016.

    16. Li, S., G. Q. Xie, D. V. Louzguine-Luzgin, Z. P. Cao, N. Yoshikawa, M. Sato, and A. Inoue, "Microwave sintering of Ni-based bulk metallic glass matrix composite in a single-mode applicator," Mater. Trans., Vol. 49, No. 12, 2850-2853, 2008.
    doi:10.2320/matertrans.MRA2008603

    17. Xie, G. Q., S. Li, D. V. Louzguine-Luzgin, Z. P. Cao, N. Yoshikawa, M. Sato, and A. Inoue, "Microwave-induced sintering of NiNbTiPt metallic glass blended with Sn powders using a single-mode applicator," J. Phys.: Conference Series, 2009 (in press).

    18. Cheng, J. P., R. Roy, and D. Agrawal, "Experimental proof of major role of magnetic field losses in microwave heating of metal and metallic composites," J. Mater. Sci. Lett., Vol. 20, No. 17, 1561-1563, 2001.
    doi:10.1023/A:1017900214477

    19. Breeze, J. D., X. Aupi, and N. M. Alford, "Ultralow loss polycrystalline alumina," Appl. Phys. Lett., Vol. 81, No. 26, 5021-5023, 2002.
    doi:10.1063/1.1532553

    20. Louzguine-Luzgin, D. V., G. Q. Xie, S. Li, A. Inoue, N. Yoshikawa, and M. Sato, "Microwave-induced heating of a single glassy phase and a two-phase material consisting of a metallic glass and Fe powder," Phil. Mag. Lett., 2009 (in press).