Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 93 > pp. 161-176


By U. C. Hasar

Full Article PDF (1,971 KB)

A new microwave method has been proposed for simultaneous broadband and stable complex permittivity and complex permeability determination of magnetic and nonmagnetic materials. The method utilizes complex transmission scattering measurements at different frequencies. For a change in constitutive parameters determination, we considered zero-order and higher-order approximations. We have verified the proposed method from measurements of two medium- and low-loss materials with another method and available reference data in the literature.

U. C. Hasar, "A new microwave method based on transmission scattering parameter measurements for simultaneous broadband and stable permittivity and permeability determination," Progress In Electromagnetics Research, Vol. 93, 161-176, 2009.

1. Chen, L. F., et al., Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, West Sussex, England, 2004.

2. Hebeish, A. A., et al., "Factors a®ecting the performance of the radar absorbant textile materials of di®erent types and structures," Progress In Electromagnetics Research B,, Vol. 3, 219-226, 2008.

3. Zhang, H., S. Y. Tan, and H. S. Tan, "An improved method for microwave nondestructive dielectric measurement of layered media," Progress In Electromagnetics Research B, Vol. 10, 145-161, 2008.

4. Baker-Jarvis, J., "Transmission/reflection and short-circuit line permittivity measurements,", NIST Project, Boulder, CO, Tech. Note 1341, 1990.

5. Baker-Jarvis, J., M. D. Janezic, J. H. Grosvenor, and R. G. Geyer, "Transmission/reflection and short-circuit line methods for measuring permittivity and permeability,", NIST Project, Boulder, CO, Tech. Note 1355, 1992.

6. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, 377-382, 1970.

7. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, 33-36, 1974.

8. Bois, K. J., L. F. Handjojo, A. D. Benally, K. Mubarak, and R. Zoughi, "Dielectric plug-loaded two-port transmission line measurement technique for dielectric property characterization of granular and liquid materials," IEEE Trans. Instrum. Meas., Vol. 48, 1141-1148, 1999.

9. Williams, T. C., M. A. Stuchly, and P. Saville, "Modified transmission-re°ection method for measuring constitutive parameters of thin °exible high-loss materials," IEEE Trans. Microw. Theory Tech., Vol. 51, 1560-1566, 2003.

10. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the Transmission/Re°ection method," IEEE Trans. Microw. Theory Tech., Vol. 38, 1096-1103, 1990.

11. Huashen, W., J. Shan, W. Guodong, and X. Ke, "Electromagnetic parameters test system based on a refined NRW transmission/reflection algorithm," Proc. IEEE Int. Symp. Microwave, Antenna, Propagation, and EMC Technologies for Wireless Communications, 1276-1280, Hangzhou, China, 2007.

12. Varadan, V. V. and R. Ro, "Unique retrieval of complex permittivity and permeability of dispersive materials from re°ection and transmitted ¯elds by enforcing causality," IEEE Trans. Microw. Theory Tech., Vol. 55, 2224-2230, 2007.

13. Boughriet, A. H., C. Legrand, and A. Chapoton, "A noniterative stable transmission/re°ection method for low-loss material complex permittivity determination," IEEE Trans. Microw. Theory Tech., Vol. 45, 52-57, 1997.

14. Hasar, U. C. and C. R. Westgate, "A broadband and stable method for unique complex permittivity determination of low-loss materials," IEEE Trans. Microw. Theory Tech., Vol. 57, 471-477, 2009.

15. Hasar, U. C., "Simple calibration plane-invariant method for complex permittivity determination of dispersive and nondispersive low-loss materials," IET Microw. Antennas Propagat., 630-637, 2009.

16. Hasar, U. C., "Two novel amplitude-only methods for complex permittivity determination of medium- and low-loss materials," Meas. Sci. Technol., Vol. 19, 055706-055715, 2008.

17. Hasar, U. C., "Elimination of the multiple-solutions ambiguity in permittivity extraction from transmission-only measurement of lossy materials," Microw. Opt. Technol. Lett., Vol. 51, 337-341, 2009.

18. Hasar, U. C., "Free-space nondestructive characterization of young mortar samples," J. Mater. Civ. Engn., Vol. 19, 674-682, 2007.

19. Hasar, U. C., "Non-destructive testing of hardened cement specimens at microwave frequencies using a simple free-space method," NDT& E Int., Vol. 42, 550-557, 2009.

20. Huang, Y. and M. Nakhkash, "Characterization of layered dielectric medium using reflection coeffcient," Electron. Lett., Vol. 34, 1207-1208, 1998.

21. Hasar, U. C., "A microcontroller-based microwave free-space measurement system for permittivity determination of lossy liquid materials," Rev. Sci. Instrum., Vol. 80, 056103-1-056103-3, 2009.

22. Press, W. H., et al., Numerical Recipes in C++: The Art of Scientific Computing, Cambridge University Press, Cambridge.

23. Baker-Jarvis, J., R. G. Geyer, and P. D. Domich, "A nonlinear least-squares solution with causality constraints applied to transmission line permittivity and permeability determination," IEEE Trans. Instrum. Meas., Vol. 41, 646-652, 1992.

24. Wang, S., M. Niu, and D. Xu, "A frequency-varying method for simultaneous measurement of complex permittivity and permeability with an open-ended coaxial probe," IEEE Trans. Microw. Theory Tech., Vol. 46, 2145-2147, 1998.

25. Engen, G. F. and C. A. Hoer, "`Thru-re°ect-line': An improved technique for calibrating the dual six-port automatic network analyzer," IEEE Trans. Microw. Theory Tech., Vol. 27, 987-993, 1979.

26. Hasar, U. C., "A microwave method for noniterative constitutive parameters determination of thin low-loss or lossy materials," IEEE Trans. Microw. Theory Tech., 2009.

27. Chin, G. Y. and E. A. Mechtly, Properties of Materials: Reference Data for Engineering: Radio, Electronics, Computer, and Communications, 4-20-4-23, Howard W. Sam, Indianapolis, IN, 1985.

28. Von Hippel, R., Dielectric Materials and Applications, 134-5, 310-32, John Wiley & Sons, New York, NY, 1954.

29. Challa, R. K., D. Kajfez, J. R. Gladden, and A. Z. Elsherbeni, "Permittivity measurement with as non-standard waveguide by using TRL calibration and fractional linear data fitting," Progress In Electromagnetics Research B, Vol. 2, 1-13, 2008.

30. Khalaj-Amirhosseini, K., "Closed form solutions for nonuniform transmission lines," Progress In Electromagnetics Research B, Vol. 2, 243-258, 2008.

31. Valagiannopoulos, C. A., "On measuring the permittivity tensor of an anisotropic material from the transmission coe±cients," Progress In Electromagnetics Research B, Vol. 9, 105-116, 2008.

© Copyright 2014 EMW Publishing. All Rights Reserved