PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 94 > pp. 83-104

A NEW CLASSIFIER FOR POLARIMETRIC SAR IMAGES

By Y. Zhang, L. Wu, and G. Wei

Full Article PDF (1,713 KB)

Abstract:
This paper proposes a hybrid classifier for polarimetric SAR images. The feature sets consist of span image, the H/A/α decomposition, and the gray-level co-occurrence matrix (GLCM) based texture features. Then, the features are reduced by principle component analysis (PCA). A 3-layer neural network (NN) is constructed, trained by resilient back-propagation (RPROP) method to fasten the training and early stop (ES) method to prevent the overfitting. The results of San Francisco and Flevoland site compared to Wishart Maximum Likelihood and wavelet-based method demonstrate the validness of our method in terms of confusion matrix and overall accuracy. In addition, NNs with and without PCA are compared. Results show the NN with PCA is more accurate and faster.

Citation:
Y. Zhang, L. Wu, and G. Wei, "A New Classifier for Polarimetric SAR Images," Progress In Electromagnetics Research, Vol. 94, 83-104, 2009.
doi:10.2528/PIER09041905
http://www.jpier.org/PIER/pier.php?paper=09041905

References:
1. Lee, J. S., M. R. Grunes, and R. Kwok, "Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution," Int. J. Remote Sensing, Vol. 15, No. 11, 2299-2311, 1994.
doi:10.1080/01431169408954244

2. Yang, S. Y., M. Wang, and L. C. Jiao, "Radar target recognition using contourlet packet transform and neural network approach," Signal Processing, Vol. 89, No. 4, 394-409, 2009.
doi:10.1016/j.sigpro.2008.09.015

3. Chen, C. H. and P.-G. P. Ho, "Statistical pattern recognition in remote sensing," Pattern Recognition, Vol. 41, No. 9, 2731-2741, 2008.
doi:10.1016/j.patcog.2008.04.013

4. Kasturirangan, K., "Space technology for humanity: A profile for the coming 50 years," Space Policy, Vol. 23, No. 3, 159-166, 2007.
doi:10.1016/j.spacepol.2007.06.015

5. Makal, S., A. Kizilay, and L. Durak, "On the target classification through wavelet-compressed scattered ultrawide-band electric field data and ROC analysis," Progress In Electromagnetics Research, Vol. 82, 419-431, 2008.
doi:10.2528/PIER08040903

6. Rostami, A. and A. Yazdanpanah-Goharriz, "A new method for classification and identification of complex fiber bragg grating using the genetic algorithm," Progress In Electromagnetics Research, Vol. 75, 329-356, 2007.
doi:10.2528/PIER07061802

7. Khan, K. U. and J. Yang, "Polarimetric synthetic aperture radar image classification by a hybrid method," Tsinghua Science and Technology, Vol. 12, No. 1, 97-104, 2007.
doi:10.1016/S1007-0214(07)70015-9

8. Castaldi, G., V. Galdi, and G. Gerini, "Evaluation of a neural-network-based adaptive beamforming scheme with magnitude-only constraints," Progress In Electromagnetics Research B, Vol. 11, 1-14, 2009.
doi:10.2528/PIERB08092303

9. Li, X. and J. Gao, "Pad modeling by using artificial neural network," Progress In Electromagnetics Research, Vol. 74, 167-180, 2007.
doi:10.2528/PIER07041201

10. Cloude, S. R. and E. Pottier, "A review of target decomposition theorems in radar polarimetry," IEEE Trans. Geosci. Remote Sensing, Vol. 34, No. 2, 498-518, 1996.
doi:10.1109/36.485127

11. Cooper, G. R. J. and D. R. Cowan, "The use of textural analysis to locate features in geophysical data," Computers & Geosciences, Vol. 31, No. 7, 882-890, 2005.
doi:10.1016/j.cageo.2005.02.001

12. Mandal, S., P. V. Sivaprasad, S. Venugopal, and K. P. N. Murthy, "Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type AISI 304L during hot torsion," Applied Soft Computing, Vol. 9, No. 1, 237-244, 2009.
doi:10.1016/j.asoc.2008.03.016

13. Luukka, P., "Classification based on fuzzy robust PCA algorithms and similarity classifier," Expert Systems with Applications, Vol. 36, No. 4, 7463-7468, 2009.
doi:10.1016/j.eswa.2008.09.015

14. Durrington, P. N., et al., "Familial hypobetalipoproteinemia due to a novel early stop mutation," Journal of Clinical Lipidology, Vol. 2, No. 5, 384-390, 2008.
doi:10.1016/j.jacl.2008.08.446

15. Shyu, J.-J., C.-H. Chan, M.-W. Hsiung, P.-N. Yang, H.-W. Chen, and W.-C. Kuo, "Diagnosis of articular cartilage damage by polarization sensitive optical coherence tomography and the extracted optical properties," Progress In Electromagnetics Research, Vol. 91, 365-376, 2009.
doi:10.2528/PIER09022602

16. Cloude, S. R. and E. Pottier, "An entropy based classification scheme for land applications of polarimetric SAR," IEEE Trans. Geosci. Remote Sensing, Vol. 35, No. 1, 549-557, 1997.
doi:10.1109/36.551935

17. Duan, Y., S.-J. Lai, and T. Huang, "Coupling projection domain decomposition method and meshless collocation method using radial basis functions in electromagnetics," Progress In Electromagnetics Research Letters, Vol. 5, 1-12, 2008.
doi:10.2528/PIERL08092003

18. Pottier, E. and S. R. Cloude, "Application of the H/A/α polarimetric decomposition theorems for land classification ," Proc. SPIE Conference on Wideband Interferometric Sensing and Imaging Polarimetry, 132-143, San Diego, CA, USA, 1997.

19. Tien, C. L., Y. R. Lyu, and S. S. Jyu, "Surface flatness of optical thin films evaluated by gray level co-occurrence matrix and entropy," Applied Surface Science, Vol. 254, 4762-4767, 2008.
doi:10.1016/j.apsusc.2008.01.088

20. Bermani, E., S. Caorsi, and M. Raffetto, "An inverse scattering approach based on a neural network technique for the detection of dielectric cylinders buried in a lossy half-space," Progress In Electromagnetics Research, Vol. 26, 67-87, 2000.
doi:10.2528/PIER99052001

21. Luukka, P., "Classification based on fuzzy robust PCA algorithms and similarity classifier," Expert Systems with Applications, Vol. 36, No. 4, 7463-7468, 2009.
doi:10.1016/j.eswa.2008.09.015

22. Zainud-Deen, S. H., H. A. El-Azem Malhat, K. H. Awadalla, and E. S. El-Hadad, "Direction of arrival and state of polarization estimation using radial basis function neural network (RBFNN)," Progress In Electromagnetics Research B, Vol. 2, 137-150, 2008.
doi:10.2528/PIERB07111801

23. Zhang, Y. D. and L. Wu, "Weights optimization of neural network via improved BCO approach," Progress In Electromagnetics Research, Vol. 83, 185-198, 2008.
doi:10.2528/PIER08051403

24. Riedmiller, M. and H. Braun, "A direct adaptive method for faster backpropagation learning: The RPROP algorithm," Proceedings of the IEEE International Conference on Neural Networks, 586-591, San Francisco, 1993.

25. Lee, Y. H. and S. Y. Huang, "Electromagnetic susceptibility of an electromagnetic band-gap filter structure," Progress In Electromagnetics Research B, Vol. 15, 31-56, 2009.
doi:10.2528/PIERB09042211

26. Gupta, K. K. and R. Gupta, "Despeckle and geographical feature extraction in SAR images by wavelet transform," ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 62, No. 6, 473-484, 2007.
doi:10.1016/j.isprsjprs.2007.06.001

27. Fukuda, S. and H. Hirosawa, "A wavelet-based texture feature set applied to classification of multifrequency polarimetric SAR images," IEEE Trans. on Geoscience and Remote Sensing, Vol. 37, No. 5, 2282-2286, 1999.
doi:10.1109/36.789624


© Copyright 2014 EMW Publishing. All Rights Reserved