PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 93 > pp. 275-289

A METAMATERIAL-BASED E-PLANE HORN ANTENNA

By R.-B. Hwang, H.-W. Liu, and C.-Y. Chin

Full Article PDF (808 KB)

Abstract:
In this paper, we reported an E-plane horn antenna incorporating a metamaterial. Such a metamaterial is made up of metallic cylinders organized in a two-dimensional square lattice. After properly designing the lattice constant and unit cell pattern, we synthesized a medium with the effective refractive index smaller than unity. Therefore, once the waves were excited within the metamaterial, the refractive waves tend to be perpendicular to the interface between the metamaterial and uniform medium. Based on this concept, a 4-way beam splitter was designed to equally distribute the input power into 4 different directions. We then guide each of the power into individual E-plane flared opening to radiate a directional beam pattern in each sector. We have fabricated this antenna and measured its radiation characteristics including the return loss and far-field pattern. The excellent agreement between the measured and simulated results was obtained. Due to the properties of robust, low-loss, and low-cost, this antenna may have promising application in a point-to-multiple-point downlink system.

Citation:
R.-B. Hwang, H.-W. Liu, and C.-Y. Chin, "A Metamaterial-Based E-Plane Horn Antenna," Progress In Electromagnetics Research, Vol. 93, 275-289, 2009.
doi:10.2528/PIER09050606
http://www.jpier.org/PIER/pier.php?paper=09050606

References:
1. Engheta, N. and R. W. Ziolkowski, "Introduction, history and fundamental theories of double-negative (DNG) metamaterials," Metamaterials: Physics and Engineering Explorations, Chap. 1, 5-41, IEEE Press, John Wiley & Sons, Inc., Jun. 2006.

2. Engheta, N., A. Alu, R. W. Ziolkowski, and A. Erontok, "Fundamentals of waveguides and antenna applications involving double-negative (DNG) and single-negative (SNG) metamaterials," Metamaterials: Physics and Engineering Explorations, Chap. 2, 43-85, IEEE Press, John Wiley & Sons, Inc., Jun. 2006.

3. Ding, W., L. Chen, and C. H. Liang, "Characteristics of electromagnetic wave propagation in biaxial anisotropic left-handed materials," Progress In Electromagnetics Research, Vol. 70, 37-52, 2007.
doi:10.2528/PIER07011001

4. Grzegorczyk, T. M., X. Chen, J. Pacheco, J. Chen, B. I. Wu, and J. A. Kong, "Reflection coefficients and Goos-Hanchen shifts in anisotropic and bianisotropic left-handed metamaterials," Progress In Electromagnetics Research, Vol. 51, 83-113, 2005.
doi:10.2528/PIER04040901

5. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys. Condens. Matter, Vol. 10, No. 22, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007

6. Hudlicka, M., J. Machac, and I. S. Nefedov, "A triple wire medium as an isotropic negative permittivity metamaterial," Progress In Electromagnetics Research, Vol. 65, 233-246, 2006.
doi:10.2528/PIER06102703

7. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2075-2084, Nov. 1999.
doi:10.1109/22.798002

8. Xi, S., H. Chen, B.-I. Wu, and J. A. Kong, "Experimental confirmation of guidance properties using planar anisotropic left-handed metamaterial slabs based on S-Ring Resonators," Progress In Electromagnetics Research, Vol. 84, 279-287, 2008.
doi:10.2528/PIER08062105

9. Wongkasem, N., A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, "Novel broadband terahertz negative refractive index metamaterials: Analysis and experiment," Progress In Electromagnetics Research, Vol. 64, 205-218, 2006.
doi:10.2528/PIER06071104

10. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, Apr. 2001.
doi:10.1126/science.1058847

11. Hwang, R. B., "Relations between the reflectance and band structure of 2D metallo-dielectric electromagnetic crystals," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 6, 1454-1464, Jun. 2004.
doi:10.1109/TAP.2004.829853

12. Li, C., Q. Sui, and F. Li, "Complex guided wave solution of grounded dielectric slab made of metamaterials," Progress In Electromagnetics Research, Vol. 51, 187-195, 2005.
doi:10.2528/PIER04011203

13. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, No. 1, 016608, 2004.
doi:10.1103/PhysRevE.70.016608

14. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett., Vol. 89, No. 21, 213902, Nov. 2002.
doi:10.1103/PhysRevLett.89.213902

15. Weng, Z.-B., Y.-C. Jiao, G. Zhao, and F.-S. Zhang, "Design and experiment of one dimension and two dimension metamaterial structures for directive emission," Progress In Electromagnetics Research, Vol. 70, 199-209, 2007.
doi:10.2528/PIER07010301

16. Wu, B.-I., W.Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701

17. Liang, L., B. Li, S. H. Liu, and C. H. Liang, "A study of using the double negative structure to enhance the gain of rectangular waveguide antenna arrays," Progress In Electromagnetics Research, Vol. 65, 275-286, 2006.
doi:10.2528/PIER06103102

18. Li, B., B. Wu, and C.-H. Liang, "Study on high gain circular waveguide array antenna with metamaterial structure," Progress In Electromagnetics Research, Vol. 60, 207-219, 2006.
doi:10.2528/PIER05121101

19. Beruete, M., I. Campillo, J. E. Rodriguez-Seco, E. Perea, M. Navarro-Cia, I. J. Nunez-Manrique, and M. Sorolla, "Enhanced gain by double-periodic stacked subwavelength hole array," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 12, 831-833, Dec. 2007.
doi:10.1109/LMWC.2007.910470

20. Franson, S. J. and R. W. Ziolkowski, Gigabit per second data transfer at 60 GHz in high gain grid antennas, IEEE AP-S, Jul. 2008.

21. Yuehe, G. and K. P. Esselle, High-gain, low-profile EBG resonator antennas with very thin metamaterial superstrates, IEEE AP-S, Jul. 2008.

22. Lin, H.-H., C.-Y. Wu, and S.-H. Yeh, Metamaterial enhanced high gain antenna for WiMAX application, IEEE AP-S, Oct. 2007.

23. Vardaxoglou, Y. and F. Capolino, Review of highly-directive flat-plate antenna technology with metasurfaces and metamaterials, IEEE Proceedings of the 36th European Microwave Conference, 963-966, Sept. 2006.

24. Russo, P., R. Rudduck, and L. Peters Jr., "A method for computing E-plane patterns of horn antennas," IEEE Trans. Antennas and Propagation, Vol. 13, No. 2, 219-224, Mar. 1965.
doi:10.1109/TAP.1965.1138418

25. Safaai-Jazi, A. and E. Jull, "A short horn with high E-plane directivity," IEEE Trans. Antennas and Propagation, Vol. 25, No. 6, 854-859, Nov. 1977.
doi:10.1109/TAP.1977.1141688

26. Yu, J., R. Rudduck, and L. Peters Jr., "Comprehensive analysis for E-plane of horn antennas by edge diffraction theory," IEEE Trans. Antennas and Propagation, Vol. 14, No. 2, 138-149, Mar. 1966.
doi:10.1109/TAP.1966.1138651

27. Rhodes, D. R., An experimental investigation of the radiation patterns of electromagnetic horn antennas, Proceedings of the IRE, Vol. 36, No. 9, 1101-1105, Sept. 1948.

28. Jull, E., "Errors in the predicted gain of pyramidal horns," IEEE Trans. Antennas and Propagation, Vol. 21, No. 1, 25-31, Jan. 1973.
doi:10.1109/TAP.1973.1140408

29. Jull, E., "Reflection from the aperture of a long E-plane sectoral horn," IEEE Trans. Antennas and Propagation, Vol. 20, No. 1, 62-68, Jan. 1972.
doi:10.1109/TAP.1972.1140137

30. Liu, K., C. A. Balanis, C. R. Birtcher, and G. C. Barber, "Analysis of pyramidal horn antennas using moment methods," IEEE Trans. Antennas and Propagation, Vol. 41, No. 10, 1379-1389, Oct. 1993.
doi:10.1109/8.247778

31. Gupta, R. C., "Analysis of radiation patterns of compound boxhorn antenna," Progress In Electromagnetics Research, Vol. 76, 31-34, 2007.
doi:10.2528/PIER07060301

32. Mallahzadeh, A. R. and F. Karshenas, "Modified TEM horn antenna for broadband applications," Progress In Electromagnetics Research, Vol. 90, 105-119, 2009.
doi:10.2528/PIER08123106


© Copyright 2014 EMW Publishing. All Rights Reserved