PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 94 > pp. 175-195

LAYER-MODE TRANSPARENT BOUNDARY CONDITION FOR THE HYBRID FD-FD METHOD

By H.-W. Chang, W.-C. Cheng, and S.-M. Lu

Full Article PDF (450 KB)

Abstract:
We combine the analytic eigen mode expansion method with the finite-difference, frequency-domain (FD-FD) method to study two-dimensional (2-D) optical waveguide devices for both TE and TM polarizations. For this we develop a layer-mode based transparent boundary condition (LM-TBC) to assist launching of an arbitrary incident wave field and to direct the reflected and the transmitted scattered wave fields back and forward to the analytical regions. LM-TBC is capable of transmitting all modes including guiding modes, cladding modes and even evanescent waves leaving the FD domain. Both TE and TM results are compared and verified with exact free space Green's function and a semi-analytical solution.

Citation:
H.-W. Chang, W.-C. Cheng, and S.-M. Lu, " layer - mode transparent boundary condition for the hybrid FD - FD method ," Progress In Electromagnetics Research, Vol. 94, 175-195, 2009.
doi:10.2528/PIER09061606
http://www.jpier.org/PIER/pier.php?paper=09061606

References:
1. Lin, C. F., Optical Components for Communications , Kluwer Academic Publishing, Boston, 2004.

2. Pavesi, L. and G. Guillot, Optical Interconnects, the Silicon Approach, Springer-Verlag, Berlin, 2006.
doi:10.1007/978-3-540-28912-8

3. Ishimaru, A., Electromagnetic Propagation, Radiation, and Scattering, Prentice Hall, Englewood Clifffs, N.J., 1991.

4. Chew, W.-C., Waves and Fields in Inhomogeneous Media, Van Norstrand Reinhold, New York, 1990.

5. Taflove, A. and S. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Norwood, MA, 2000.

6. Zheng, G., A. A. Kishk, A. W. Glisson, and A. B. Yakovlev, "A novel implementation of modified Maxwell's equations in the periodic finite-difference time-domain method," Progress In Electromagnetics Research, PIER 59, 85-100, 2006.

7. Shao, W., S.-J. Lai, and T.-Z. Huang, "Compact 2-D full-wave order-marching time-domain method with a memory-reduced technique," Progress In Electromagnetics Research Letters, Vol. 6, 157-164, 2009.
doi:10.2528/PIERL08111811

8. Yamauchi, J., Propagating Beam Analysis of Optical Waveguides, Research Studies Press, Baldock, England, 2003.

9. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas and Propagation, Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

10. Taflove, A. and M. Brodwin, "Numerical solution of steady-state electromagnetic scattering problem using the time-dependent Maxwell's equations," IEEE Trans. Microwave Theory and Techniques, Vol. 23, 623-630, 1975.
doi:10.1109/TMTT.1975.1128640

11. Taflove, A. and M. Brodwin, "Computation of the electromagnetic fields and induced temperatures within a model of the microwave-irradiated human eye," IEEE Trans. Microwave Theory and Techniques, Vol. 23, 888-896, 1975.
doi:10.1109/TMTT.1975.1128708

12. Holland, R., "Threde: A free-field EMP coupling and scattering code," IEEE Trans. Nuclear Science, Vol. 24, 2416-2421, 1977.
doi:10.1109/TNS.1977.4329229

13. Kunz, K. S. and K. M. Lee, "A three-dimensional finite-difference solution of the external response of an aircraft to a complex transient EM environment 1: The method and its implementation," IEEE Trans. Electromagnetic Compatibility, Vol. 20, 328-333, 1978.
doi:10.1109/TEMC.1978.303726

14. Huang, Y. C., "Study of absorbing boundary conditions for finite difference time domain simulation of wave equations,", Master Thesis, Graduate Institute of Communication Engineering, National Taiwan University, June 2003.

15. Mur, G., "Absorbing boundary conditions for the finite difference approximation of the time domain electromagnetic field equation," IEEE Trans. Electromagnetic Compat. EMC-23, Vol. 4, 377-382, 1981.
doi:10.1109/TEMC.1981.303970

16. Lindman, E. L., "Free-space boundary conditions for the time dependent wave equation," J. Comp. Phys., Vol. 18, 66-78, 1975.
doi:10.1016/0021-9991(75)90102-3

17. Liao, Z. P., H. Wong, B. Yang, and Y. F. Yuan, "A transmitting boundary for transient wave analysis," Scientia Sinica (Series A), Vol. 27, 1063-1076, 1984.

18. Grote, M. and J. Keller, "Nonreflecting boundary conditions for time dependent scattering," J. Comp. Phys., Vol. 127, 52-81, 1996.
doi:10.1006/jcph.1996.0157

19. Engquist, B. and A. Majda, "Absorbing boundary conditions for the numerical simulation of waves," Math Comp., Vol. 31, 629-651, 1971.
doi:10.2307/2005997

20. Engquist, B. and A. Majda, "Radiation boundary conditions for acoustic and elastic wave calculations," J. Comp. Phys., Vol. 127, 52-81, 1996.
doi:10.1006/jcph.1996.0157

21. Hadley, G. R., "Transparent boundary conditions for the beam propagation method," IEEE J. Quantum Electron, Vol. 28, 363-370, 1992.
doi:10.1109/3.119536

22. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comp. Phys., Vol. 114, 185-200, 1994.
doi:10.1006/jcph.1994.1159

23. Berenger, J. P., "Perfectly matched layer for the FDTD solution of wave-structure interaction problems," IEEE Trans. Antennas and Propagation, Vol. 44, No. 1, 110-117, 1996.
doi:10.1109/8.477535

24. Zheng, K., W.-Y. Tam, D.-B. Ge, and J.-D. Xu, "Uniaxial PML absorbing boundary condition for truncating the boundary of dng metamaterials," Progress In Electromagnetics Research Letters, Vol. 8, 125-134, 2009.
doi:10.2528/PIERL09030901

25. Juntunen, J. S., "Zero reflection coefficient in discretized PML," IEEE Microwave and Wireless Compt. Letter, Vol. 11, No. 4, 2001.

26. Johnson, S. G., "Notes on perfectly matched layers (PMLs),", MIT 18.369 and 18.336 course note, July 2008.

27. Hwang, J.-N., "A compact 2-D FDFD method for modeling microstrip structures with nonuniform grids and perfectly matched layer," Trans. on MTT., Vol. 53, 653-659, Feb. 2005.
doi:10.1109/TMTT.2004.840569

28. Robertson, M. J., S. Ritchie, and P. Dayan, "Semiconductor waveguides: Analysis of optical propagation in single rib structures and directional couplers," Inst. Elec. Eng. Proc.-J., Vol. 132, 336-342, 1985.

29. Vassallo, C., "Improvement of finite difference methods for step-index optical waveguides," Inst. Elec. Eng. Proc.-J., Vol. 139, 137-142, 1992.

30. Hua, Y., Q. Z. Liu, Y. L. Zou, and L. Sun, "A hybrid FE-BI method for EM scattering from dielectric bodies partiallycovered by conductors," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2-3, 423-430, 2008.
doi:10.1163/156939308784160802

31. Wang, S.-M., "Development of large-scale FDFD method for passive optical devices,", Master Thesis (in Chinese), Institute of Elctro-Optical Engineering, National Sun Yat-sen University, June 2005.

32. Chang, H. W. and W. C. Cheng, "Analysis of dielectric waveguide termination with tilted facets by analytic continuity method," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 12, 1653-1662, 2007.

33. Cheng, W.-C. and H.-W. Chang, "Comparison of PML with layer-mode based TBC for FD-FD method in a layered medium," International Conference on Optics and Photonics in Taiwan, P1-170, Dec. 2008.

34. Chiang, Y. C., Y. Chiou, and H. C. Chang, "Improved full-vectorial finite-difference mode solver for optical waveguides with step-index profiles," J. of Lightwave Technology, Vol. 20, No. 8, 1609-1618, August 2002.
doi:10.1109/JLT.2002.800292

35. Lavranos, C. S. and G. Kyriacou, "Eigenvalue analysis of curved waveguides employing an orthogonal curvilinear frequency domain finite difference method," IEEE Microwave Theory and Techniques, Vol. 57, 594-611, March 2009.
doi:10.1109/TMTT.2009.2013314

36. Magnanini, R. and F. Santosa, "Wave propagation in a 2-D optical waveguide," SIAM J. Appl. Math., Vol. 61, No. 4, 1237-1252, 2000.

37. Chang, H.-W. and M.-H. Sheng, "Field analysis of dielectric waveguide devices based on coupled transverse-mode integral equation --- Mathematical and numerical formulations," Progress In Electromagnetics Research, PIER 78, 329-347, 2008.


© Copyright 2014 EMW Publishing. All Rights Reserved