PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 94 > pp. 419-433

LOWER FREQUENCY LIMIT OF CARBON NANOTUBE ANTENNA

By A. M. Attiya

Full Article PDF (480 KB)

Abstract:
Carbon nanotubes are characterized by slow wave propagation and high characteristic impedance due to the additional kinetic inductive effect. This slow wave property can be used to introduce resonant dipole antennas with dimensions much smaller than traditional half-wavelength dipole in Terahertz band. However, this property has less effect at lower frequency bands. This paper introduces the physical interpretation of this property based on the relation between the resonance frequency and the surface wave propagation constant on a carbon nanotube. This surface wave propagation is found to be characterized by high attenuation coefficient at low frequency bands which limits using carbon nanotube as an antenna structure at these frequencies.

Citation:
A. M. Attiya, "Lower frequency limit of carbon nanotube antenna," Progress In Electromagnetics Research, Vol. 94, 419-433, 2009.
doi:10.2528/PIER09062001
http://www.jpier.org/PIER/pier.php?paper=09062001

References:
1. Iijima, S., "Helical microtabules of graphitic carbon," Nature, Vol. 354, 56-58, 1991.
doi:10.1038/354056a0

2. Slepyan, G. Y., S. A. Maksimenko, A. Lakhtakia, O. M. Yevtushenko, and A. V. Gusakov, "Electronic and electromagnetic properties of nanotubes," Phys. Rev. B, Vol., Vol. 57, 9485, 1998.
doi:10.1103/PhysRevB.57.9485

3. Slepyan, G. Y., S. A. Maksimenko, A. Lakhtakia, O. M. Yevtushenko, and A. V. Gusakov, "Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation," Phys. Rev. B, Vol. 60, 17136 -17149, 1999.
doi:10.1103/PhysRevB.60.17136

4. Miyamoto, Y., A. Rubio, S. G. Louie, and M. L. Cohen, "Self-inductance of chiral conducting nanotubes," Phys. Rev. B, Vol. 60 , 13885, 1999.
doi:10.1103/PhysRevB.60.13885

5. Mikki, S. M. and A. A. Kishk, "A symmetry-based formalism for the electrodynamics of nanotubes," Progress In Electromagnetics Research, PIER 86, 111-134, 2008.

6. Hanson, G. W., "Fundamental transmitting properties of carbon nanotube antenna," IEEE Trans. Antennas and Propagation, Vol. 53, 3426-3435, 2005.
doi:10.1109/TAP.2005.858865

7. Burke, P. J., "Luttinger liquid theory as a model of Gigahertz electrical properties of carbon nanotubes," IEEE Trans. Nanotechnology, Vol. 1, 129-144, 2002.
doi:10.1109/TNANO.2002.806823

8. Burke, P. J., "Corrections to Luttinger liquid theory as a model of Gigahertz electrical properties of carbon nanotubes," IEEE Trans Nanotechnology, Vol. 3, 331, 2004.

9. Burke, P. J., "An RF circuit model for carbon nanotubes," IEEE Trans. Nanotechnology, Vol. 2, 55-58, 2003.
doi:10.1109/TNANO.2003.808503

10. Burke, P. J., "Corrections to an RF circuit model for carbon nanotubes," IEEE Trans. Nanotechnology, Vol. 3, No. 331, 2004.

11. Chiariello, A. G., A. Maffucci, G. Miano, F. Villone, and W. Zamboni, "Metallic carbon nanotube interconnects, Part II: A transmission line model," IEEE Workshop on Signal Propagation on Interconnects, 185-188, 2006.
doi:10.1109/SPI.2006.289216

12. Chiariello, A. G., A. Maffucci, G. Miano, F. Villone, and W. Zamboni, "Metallic carbon nanotube interconnects, Part I: A fluid model and a 3D integral formulation," IEEE Workshop on Signal Propagation on Interconnects, 181-184, 2006.
doi:10.1109/SPI.2006.289215

13. Maffucci, A. and G. Miano, "Electromagnetic and circuital modeling of carbon nanotube interconnects," 2nd Electronics System-integration Technology Conference, 1051-1056, 2006.

14. Miano, G., A. Maffucci, F. Villone, and W. Zamboni, "Frequency-domain modelling of nanoscale electromagnetic devices using a fluid model and an integral formulation," International Conference on Electromagnetics in Advanced Applications, 233-236, 2007.
doi:10.1109/ICEAA.2007.4387280

15. Harrison, C. W., "Monopole with inductive loading," IEEE Trans. on Antennas and Propagation, Vol. 11, 394-400, 1963.
doi:10.1109/TAP.1963.1138059

16. Hanson, G. W., "Current on an infinitely-long carbon nanotube antenna excited by a gap generator," EEE Trans. Antennas and Propagation, Vol. 54, 76-81, 2006.
doi:10.1109/TAP.2005.861550

17. Hanson, G. W., "Radiation efficiency of nanoradius dipole antennas in the microwave and far-infrared regime," IEEE Antennas and Propagation Magazine, Vol. 50, 66-77, 2008.
doi:10.1109/MAP.2008.4563565

18. Burke, P. J., S. Li, and Z. Yu, "Quantitative theory of nanowire and nanotube antenna performance," IEEE Trans. Nanotechnology, Vol. 5, 314-334, 2006.
doi:10.1109/TNANO.2006.877430

19. Huang, Y., W.-Y. Yin, and Q. H. Liu, "Performance prediction of carbon nanotube bundle dipole antennas," IEEE Trans. Nanotechnology, Vol. 7, 331-337, 2008.
doi:10.1109/TNANO.2007.915017

20. Slepyan, G. Y., M. V. Shuba, A. M. Nemilentsau, and S. A. Maksimenko, "Electromagnetic theory of nanodimentional antennas for terahertz, infrared and optical regimes," 12th International Conference on Mathematical Methods in Electromagnetic Theory, 118-123, 2008.
doi:10.1109/MMET.2008.4580910

21. Fichtner, N., X. Zhou, and P. Russer, "Investigation of carbon nanotube antennas using thin wire integral equations," Adv. Radio Sci., Vol. 6, 209-211, 2008.

22. Maffucci, A., G. Miano, G. Rubinacci, A. Tamburrino, and F. Villone, "Plasmonic, carbon nanotube and conventional nano-interconnects: A comparison of propagation properties," 12th IEEE Workshop on Signal Propagation on Interconnects, SPI 2008.


© Copyright 2014 EMW Publishing. All Rights Reserved