PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 95 > pp. 365-380

PERMITTIVITY MEASUREMENT OF THIN DIELECTRIC MATERIALS FROM REFLECTION-ONLY MEASUREMENTS USING ONE-PORT VECTOR NETWORK ANALYZERS

By U. C. Hasar

Full Article PDF (2,449 KB)

Abstract:
We have proposed a simple waveguide method for complex permittivity determination of dielectric materials which are not completely filling the entire sample holder. The method reconstructs the permittivity from measured reflection-only scattering parameters by a one-port vector network analyzer of two configurations of the sample holder. It not only eliminates the necessity of any knowledge of the location of the shifted sample inside its holder but also decreases measurement errors occurring with the presence of undesired air gaps, which seriously affect the measurement accuracy of transmission-only measurements, present between the sample and holder walls. Furthermore, the reconstruction of permittivity can be realized by any one-port vector network analyzer, which is less expensive than their two-port counterparts. Therefore, the proposed method is cost-effective. We have analyzed the accuracy of the proposed method and noted a good compromise between the reference data and measured values of permittivities of low-loss polyvinyl-chloride and polytetrafluoro−ethylene samples (less than 8 percent for dielectric constant and less than 15 percent for loss tangent values).

Citation:
U. C. Hasar, "Permittivity Measurement of Thin Dielectric Materials from Reflection-Only Measurements Using One-Port Vector Network Analyzers," Progress In Electromagnetics Research, Vol. 95, 365-380, 2009.
doi:10.2528/PIER09062501
http://www.jpier.org/PIER/pier.php?paper=09062501

References:
1. Chen, L. F., et al., Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, West Sussex, England, 2004.

2. He, X., Z. X. Tang, B. Zhang, and Y. Wu, "A new deembedding method in permittivity measurement of ferroelectric thin film material," Progress In Electromagnetics Research Letters, Vol. 3, 1-8, 2008.
doi:10.2528/PIERL08011501

3. Wu, Y. Q., Z. X. Tang, Y. H. Xu, X. He, and B. Zhang, "Permittivity measurement of ferroelectric thin film based on CPW transmission line," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 4, 555-562, 2008.
doi:10.1163/156939308784150272

4. Zainud-Deen, S. H., W. M. Hassen, E. El deen Ali, and K. H. Awadalla, "Breast cancer detection using a hybrid finite difference frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.
doi:10.2528/PIERB07112703

5. Yan, L. P., K. M. Huang, and C. J. Liu, "A noninvasive method for determining dielectric properties of layered tissues on human back," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1829-1843, 2007.

6. Capineri, L., D. J. Daniels, P. Falorni, O. L. Lopera, and C. G. Windsor, "Estimation of relative permittivity of shallow soils by using the ground penetrating radar response from different buried targets," Progress In Electromagnetics Research Letters, Vol. 2, 63-71, 2008.
doi:10.2528/PIERL07122803

7. Zainud-Deen, S. H., M. E. S. Badr, E. El-Deen, and K. H. Awadalla, "Microstrip antenna with corrugated ground plane structure as a sensor for landmines detection," Progress In Electromagnetics Research B, Vol. 2, 259-278, 2008.
doi:10.2528/PIERB07112702

8. Hebeish, A. A., M. A. Elgamel, R. A. Abdelhady, and A. A. Abdelaziz, "Factors affecting the performance of the radar absorbant textile materials of different types and structures," Progress In Electromagnetics Research B, Vol. 3, 219-226, 2008.
doi:10.2528/PIERB07121702

9. Chung, B.-K., "Dielectric constant measurement for thin material at microwave frequencies ," Progress In Electromagnetics Research, Vol. 75, 239-252, 2007.
doi:10.2528/PIER07052801

10. Murata, K., A. Hanawa, and R. Nozaki, "Broadband complex permittivity measurement techniques of materials with thin configuration at microwave frequencies," J. Applied Phys., Vol. 98, 084107-1-084107-08, 2005.

11. Zhang, H., S. Y. Tan, and H. S. Tan, "An improved method for microwave nondestructive dielectric measurement of layered media," Progress In Electromagnetics Research B, Vol. 10, 145-161, 2008.
doi:10.2528/PIERB08082701

12. Olmi, R., et al., "Thickness-independent measurement of the permittivity of thin samples in the X band," Meas. Sci. Technol., Vol. 13, 503-509, 2002.

13. Rubinger, C. P. L. and L. C. Costa, "Building a resonant cavity for the measurement of microwave dielectric permittivity of high loss materials ," Microwave Opt. Tech. Lett., Vol. 49, 1687-1690, 2007.
doi:10.1002/mop.22506

14. Li, E., Z.-P. Nie, G. Guo, Q. Zhang, Z. Li, and F. He, "Broadband measurements of dielectric properties of low-loss materials at high temperatures using circular cavity method," Progress In Electromagnetics Research, Vol. 92, 103-120, 2009.
doi:10.2528/PIER09030904

15. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Trans. Microw. Theory Tech., Vol. 38, 1096-1103, 1990.
doi:10.1109/22.57336

16. Sarabandi, K. and F. T. Ulaby, "Technique for measuring the dielectric constant of thin materials," IEEE Trans. Instrum. Meas., Vol. 37, 631-636, 1988.
doi:10.1109/19.9828

17. Kenneth, E. D. and L. J. Buckley, "Dielectric materials measurement of thin samples at millimeter wavelengths," IEEE Trans. Instrum. Meas., Vol. 41, 723-725, 1992.

18. Chung, B.-K., "A convenient method for complex permittivity measurement of thin materials at microwave frequencies," J. Phys. D.: Appl. Phys., Vol. 39, 1926-1931, 2006.
doi:10.1088/0022-3727/39/9/030

19. Challa, R. K., et al., "Permittivity measurement with a non-standard waveguide by using TRL calibration and fractional linear data," Progress In Electromagnetics Research B, Vol. 2, 1-13, 2008.
doi:10.2528/PIERB07102001

20. Hasar, U. C., "A microwave method for noniterative constitutive parameters determination of thin low-loss or lossy materials ," IEEE Trans. Microw. Theory Tech., Vol. 57, 1595-1601, 2009.
doi:10.1109/TMTT.2009.2020779

21. Ness, J., "Broad-band permittivity measurements using the semi-automatic network analyzer," IEEE Trans. Microw. Theory Tech., Vol. 33, 1222-1226, 1985.
doi:10.1109/TMTT.1985.1133198

22. Hasar, U. C., "Two novel amplitude-only methods for complex permittivity determination of medium- and low-loss materials," Meas. Sci. Techol., Vol. 19, 055706-055715, 2008.
doi:10.1088/0957-0233/19/5/055706

23. Hasar, U. C. and C. R. Westgate, "A broadband and stable method for unique complex permittivity determination of low-loss materials ," IEEE Trans. Microw. Theory Tech., Vol. 57, 471-477, 2009.
doi:10.1109/TMTT.2008.2011242

24. Hasar, U. C., "A fast and accurate amplitude-only transmission reflection method for complex permittivity determination of lossy materials ," IEEE Trans. Microw. Theory Tech., Vol. 56, 2129-2135, 2008.
doi:10.1109/TMTT.2008.2002229

25. Hasar, U. C., "Simple calibration plane-invariant method for complex permittivity determination of dispersive and non-dispersive low-loss materials," IET Microw. Antennas Propag., Vol. 3, 630-637, 2009.
doi:10.1049/iet-map.2008.0087

26. Hasar, U. C., "Elimination of the multiple-solutions ambiguity in permittivity extraction from transmission-only measurements of lossy materials," Microw. Opt. Technol. Lett., Vol. 51, 337-341, 2009.
doi:10.1002/mop.24048

27. Hasar, U. C. and O. E. Inan, "Elimination of the dependency of the calibration plane and the sample thickness from complex permittivity measurements of thin materials," Microw. Opt. Technol. Lett., Vol. 51, 1642-1646, 2009.
doi:10.1002/mop.24445

28. Sucher, M. and J. Fox, "Handbook of Microwave Measurements," John Wiley & Sons, Vol. II, 1963.

29. Hasar, U. C., "Thickness-independent automated constitutive parameters extraction of thin solid and liquid materials from waveguide measurements," Progress In Electromagnetics Research, Vol. 92, 17-32, 2009.
doi:10.2528/PIER09031606

30. Wan, C., "Calibrating one-path network analyzers with three lines and a short," Microw. Opt. Technol. Lett., Vol. 21, 148-151, 1999.
doi:10.1002/(SICI)1098-2760(19990420)21:2<148::AID-MOP17>3.0.CO;2-P

31. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, New Jersey, NJ, 1989.

32. Press, W. H., et al., Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, New York, NY, 1992.

33. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, 33-36, 1974.
doi:10.1109/PROC.1974.9382

34. Baker-Jarvis, J., "Transmission/reflection and short-circuit line permittivity measurements," Natl. Inst. Stand. Technol., Boulder, CO, Tech. Note 1341, July 1990.

35. Ni, E., "An uncertainty analysis for the measurement of intrinsic properties of materials by the combined transmission-reflection method," IEEE Trans. Instrum. Meas., Vol. 41, 495-499, 1992.
doi:10.1109/19.155914

36. Hasar, U. C., "Thickness-independent complex permittivity determination of partially filled thin dielectric materials into rectangular waveguides," Progress In Electromagnetics Research, Vol. 93, 189-193, 2009.
doi:10.2528/PIER09042212

37. Kline, S. J. and F. A. McClintock, "Describing uncertainties in single sample experiments," Mech. Eng., Vol. 75, 3, 1953.

38. Engen, G. F. and C. A. Hoer, "Thru-reflect-line: An improved technique for calibrating the dual six-port automatic network analyzer," IEEE Trans. Microw. Theory Tech., Vol. 27, 987-993, 1979.
doi:10.1109/TMTT.1979.1129778

39. Hasar, U. C. and O. Simsek, "An accurate complex permittivity method for thin dielectric materials," Progress In Electromagnetics Research, Vol. 91, 123-138, 2009.
doi:10.2528/PIER09011702

40. Von Hippel, A. R., Dielectric Materials and Applications, John Wiley & Sons, New York, NY, 1954.


© Copyright 2014 EMW Publishing. All Rights Reserved