PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 97 > pp. 75-93

ON QUANTITATIVE MICROWAVE TOMOGRAPHY OF FEMALE BREAST

By I. Catapano, L. Di Donato, L. Crocco, O. M. Bucci, A. F. Morabito, T. Isernia, and R. Massa

Full Article PDF (260 KB)

Abstract:
Microwave tomography deserves attention in biomedical imaging, owing to its potential capability of providing a morphological and functional assessment of the inspected tissues. However, such a goal requires the not trivial task of solving a non linear inverse scattering problem. In this paper, the factors affecting the complexity of the inverse problem are exploited to trace guidelines aimed at setting the matching fluid, the frequency range and the number of probes in such a way that the dielectric parameters of female breast tissues can be reliably retrieved. Examples, concerning 2D realistic numerical phantoms obtained by NMR images, are given to asses a osteriori the effectiveness of the proposed guidelines.

Citation:
I. Catapano, L. Di Donato, L. Crocco, O. M. Bucci, A. F. Morabito, T. Isernia, and R. Massa, "On Quantitative Microwave Tomography of Female Breast," Progress In Electromagnetics Research, Vol. 97, 75-93, 2009.
doi:10.2528/PIER09080604
http://www.jpier.org/PIER/pier.php?paper=09080604

References:
1. Fear, E. C., P. M. Meaney, and M. A. Stuchly, "Microwaves for breast cancer detection," IEEE Potentials, 2003.

2. Zhang, H., S. Y. Tan, and H. S. Tan, "A novel method for microwave breast cancer detection," Progress In Electromagnetics Research, PIER 83, 413-434, 2008.

3. Bindu, G., S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, PIER 58, 149-169, 2006.

4. Lazaro, A., D. Girbau, and R. Villarino, "Simulated and experimental investigation of microwave imaging using UWB," Progress In Electromagnetics Research, PIER 94, 263-280, 2009.

5. Huynh, P. T., A. M. Jarolimek, and S. Dayee, "The false-negative mammogram," Radiographics, Vol. 18, 1137-1154, 1998.

6. Christiansen, C. L., F. Wang, M. B. Barton, W. Kreuter, J. G. Elmore, A. E. Gelfand, and S. W. Fletcher, "Predicting the cumulative risk of false-positive mammograms," Nat. Cancer Inst. J., Vol. 92, 1373-1380, 2000.
doi:10.1093/jnci/92.17.1373

7. Li, X., S. K. Davis, S. C. Hagness, D. W. Van Der Weide, and B. D. Van Veen, "Microwave imaging via space-time beam-forming: Experimental investigation of tumor detection in multilayer breast phantoms," IEEE Trans. Microw. Theory Tech., Vol. 52, 1856-1865, 2004.
doi:10.1109/TMTT.2004.832686

8. Williams, T. C., E. C. Fear, and D. T. Westwick, "Tissue sensing adaptive radar for breast cancer detection-investigations of an improved skin-sensing method," IEEE Trans. Microw. Theory Tech., Vol. 54, 1308-1313, 2006.
doi:10.1109/TMTT.2006.871224

9. Zainud-Deen, S. H., W. M. Hassen, E. El deen Ali, and K. H. Awadalla, "Breast cancer detection using a hybrid finite difference frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35 -46, 2008.
doi:10.2528/PIERB07112703

10. Meaney, P. M., et al., "Initial clinical experience with microwave breast imaging in women with normal mammography," Academic Radiology, Vol. 14, 207-218, 2007.
doi:10.1016/j.acra.2006.10.016

11. Rubk, T., P. M. Meaney, P. Meincke, and K. D. Paulsen, "Nonlinear microwave imaging for breast-cancer screening using GaussNewton's method and the CGLS inversion algorithm," IEEE Trans. Antennas Propag., Vol. 55, 2320-2231, 2007.
doi:10.1109/TAP.2007.901993

12. De Zaeytijd, J., C. L. Conmeaux, and A. Franchois, "Three-dimensional linear sampling applied to microwave breast imaging," 29th General Assembly of the International Union of Radio Science (URSI), Chicago, USA, August 7-16, 2008.

13. Zhou, H., T. Takenaka, J. E. Johnson, and T. Tanaka, "A breast imaging model using microwaves and a time a domain three dimensional reconstruction," Progress In Electromagnetics Research, PIER 93, 57-70, 2009.

14. Gilmore, C., A. Abubakar, W. Hu, T. M. Habashy, and P. M. Van Den Berg, "Microwave biomedical data inversion using the finite-difference contrast source inversion method," IEEE Trans. Antennas Propag., Vol. 57, 1528-1538, 2009.
doi:10.1109/TAP.2009.2016728

15. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: 3. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003

16., Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/14/012

17. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, W. Temple, D. Mew, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissue obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002

18. Mashal, A., B. Sitharaman, J. H. Booske, and S. C. Haghness, "Dielectric characterization of carbons nanotube contrast agents for microwave breast cancer detection," 2009 IEEE Int. Symp. on Antennas and Propag. & USNC/URSI National Radio Sci. Meeting, Charleston, SC, USA, June 1-5, 2009.

19. Zhao, M., S. C. Haghness, B. D. Van Veen, and D. W. Van Der Weide, "Computational study of a focused acustic and microwave hybrid sensing modality that exploits coupled and elastic properties contrasts," 2009 IEEE Int. Symp. on Antennas and Propag. & USNC/URSI National Radio Sci. Meeting, Charleston, SC, USA, June 1-5, 2009.

20. Abbosh, A., "Early breast cancer detection using hybrid imaging modality," 2009 IEEE Int. Symp. on Antennas and Propag. & USNC/URSI National Radio Sci. Meeting, Charleston, SC, USA, June 1-5, 2009.

21. Bertero, M. and P. Boccacci, Introduction to Inverse Problems in Imaging, Inst. of Physics, Bristol Philadelphia, UK, 1998.

22. Li, F., X. Chen, and K. Huang, "Microwave imaging a buried object by the GA and using the S11 parameter," Progress In Electromagnetics Research, PIER 85, 289-302, 2008.

23. Meng, Z. Q., "Autonomous genetic algorithm for functional optimization," Progress In Electromagnetics Research, PIER 72, 253-268, 2007.

24. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. Van Veem, and S. C. Hagness, "Database of 3D grid-based numerical breast phantom for use in computational electromagnetics simulations,", http://uwcem.ece.wisc.edunhome.htm.

25. Colton, D., H. Haddar, and M. Piana, "The linear sampling method in inverse electromagnetic scattering theory," Inv. Ploblems, Vol. 19, S105-S137, 2003.
doi:10.1088/0266-5611/19/6/057

26. Isernia, T., V. Pascazio, and R. Pierri, "On the local minima in a tomographic imaging technique," IEEE Trans. Geosci. Rem. Sens., Vol. 39, 1596-1607, 2001.
doi:10.1109/36.934091

27. Balanis, C. A., Advanced Enginnering Electromagnetics, John Wileys & Sons, 1989.

28. Catapano, I., L. Crocco, and T. Isernia, "On simple method for shape reconstruction of unknown scatters," IEEE Trans. Antennas Propag., Vol. 55, 1431-1436, 2007.
doi:10.1109/TAP.2007.895563

29. Catapano, I., L. Crocco, M. D'Urso, and T. Isernia, "On the effect of support estimation and of a new model in 2-D inverse scattering problems," IEEE Trans. Antennas and Propag., Vol. 55, 1895-1899, 2007.
doi:10.1109/TAP.2007.898647

30. Van Den Berg, M. and A. Abubakar, "Contrast source inversion method: State of art," Progress In Electromagnetics Research, PIER 34, 189-218, 2001.

31., Tikhonov, A. N., A. V. Goncharky, V. V. Stepanov, and A. G. Yagola, "Numerical Methods for the Solution of Ill-posed Problems," Dordrecht, Kluver, 1995.

32. Bucci, O. M. and T. Isernia, "Electromagnetic inverse scattering: Retrievable information and measurement strategies," Radio Sci., Vol. 32, 2123-2137, 1997.
doi:10.1029/97RS01826

33. Bucci, O. M. and G. Franceschetti, "On the degree of feedom of scattered fields," IEEE Trans. Antennas Propag., Vol. 37, 918-926, 1989.
doi:10.1109/8.29386

34. Bucci, O. M., L. Crocco, and T. Isernia, "Improving the reconstruction capabilties in inverse scattering problems by exploitation of close-proximity setup," J. Opt. Soc. Am. A, Vol. 16, 1788-1798, 1999.
doi:10.1364/JOSAA.16.001788

35. Chew, W. C. and J. C. Lin, "A frequency-hopping approach for microwave imaging of large inhomogeneous bodies," IEEE Microw. Guided Wave Lett., Vol. 5, 439-441, 1995.
doi:10.1109/75.481854

36. Rappaport, C., "Determination of bolus dielectric constrant for optimum coupling of microwaves through skin for breast cancer imaging," Int. J. of Antennas and Propag., Vol. 2008, 2008.

37. Catapano, I., L. Crocco, M. DUrso, A. Morabito, and T. Isernia, "Microwave tomography of breast cancer: A feasibility study," European Conf. on Antennas and Propag. (EuCAP), Nice, France, November 6-10, 2006.

38. Slaney, M., A. C. Kak, and L. E. Larsen, "Limitations of imaging with first-order diffraction tomography," IEEE Trans. on Microw. Theory Tech., Vol. 32, 860-874, 1984.
doi:10.1109/TMTT.1984.1132783

39. Bucci, O. M., N. Cardace, L. Crocco, and T. Isernia, "Degree of non-linearity and a new solution procedure in scalar 2-D inverse scattering problems," J. Opt. Soc. Am. A, Vol. 18, 1832-1845, 2001.
doi:10.1364/JOSAA.18.001832

40. Isernia, T., L. Crocco, and M. D'Urso, "New tools and series for forward and inverse scattering problems in lossy media," IEEE Geosci. Remote Sens. Letters, Vol. 1, 327-331, 2004.
doi:10.1109/LGRS.2004.837008


© Copyright 2014 EMW Publishing. All Rights Reserved