PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 99 > pp. 245-260

EXPLOITATION OF TE-TM SCATTERING DATA FOR MICROWAVE IMAGING THROUGH THE MULTI-SCALING RECONSTRUCTION STRATEGY

By L. Poli and P. Rocca

Full Article PDF (253 KB)

Abstract:
In this paper, the solution of two-dimensional inverse scattering problems is addressed by probing the unknown scenarios with TE and TM waves. To better exploit the information content of the scattered data the multi-zooming approach is used. The results of experiments with single as well as multiple scatterers are reported and discussed also in comparison with single-polarization inversions.

Citation:
L. Poli and P. Rocca, "Exploitation of TE-TM Scattering Data for Microwave Imaging through the Multi-Scaling Reconstruction Strategy," Progress In Electromagnetics Research, Vol. 99, 245-260, 2009.
doi:10.2528/PIER09101105
http://www.jpier.org/PIER/pier.php?paper=09101105

References:
1. Caorsi, S., A. Massa, and M. Pastorino, "Numerical assessment concerning a focused microwave diagnostic method for medical applications," IEEE Trans. Antennas Propag., Vol. 48, No. 11, 1815-1830, 2000.

2. Abubakar, A., P. M. Van Den Berg, and J. J. Mallorqui, "Imaging of biomedical data using a multiplicative regularized contrast source inversion method," EEE Trans. Microw. Theory Tech., Vol. 50, No. 7, 1761-1771, 2002.
doi:10.1109/TMTT.2002.800427

3. Caorsi, S., A. Massa, M. Pastorino, and A. Rosani, "Microwave medical imaging: Potentialities and limitations of a stochastic optimization technique," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 8, 1909-1916, 2004.
doi:10.1109/TMTT.2004.832016

4. Bindu, G., A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Dielectric studies of corn syrup for applications in microwave breast imaging," Progress In Electromagnetics Research, Vol. 59, 175-186, 2006.
doi:10.2528/PIER05072801

5. Bindu, G., S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 149-169, 2006.
doi:10.2528/PIER05081802

6. Benedetti, M., M. Donelli, A. Martini, M. Pastorino, A. Rosani, and A. Massa, "An innovative microwave imaging technique for non-destructive evaluation: Applications to civil structures monitoring and biological bodies inspection," IEEE Trans. Instrum. Meas., Vol. 55, No. 6, 1878-1884, 2006.
doi:10.1109/TIM.2006.884287

7. Zhang, H., S. Y. Tan, and H. S. Tan, "A novel method for microwave breast cancer detection," Progress In Electromagnetic Research, Vol. 83, 413-434, 2008.
doi:10.2528/PIER08062701

8. Zhou, H., T. Takenaka, J. Johnson, and T. Tanaka, "A breast imaging model using microwaves and a time domain three dimensional reconstruction method," Progress In Electromagnetics Research, Vol. 93, 57-70, 2009.
doi:10.2528/PIER09033001

9. Weedon, W. H., W. C. Chew, and P. E. Mayes, "A step-frequency radar imaging system for microwave nondestructive evaluation," Progress In Electromagnetics Research, Vol. 28, 121-146, 2000.
doi:10.2528/PIER99062501

10. Pastorino, M., S. Caorsi, and A. Massa, "A global optimization technique for microwave nondestructive evaluation," IEEE Trans. Instrum. Meas., Vol. 51, No. 4, 666-673, 2002.
doi:10.1109/TIM.2002.803084

11. Benedetti, M., M. Donelli, G. Franceschini, M. Pastorino, Benedetti, M., M. Donelli, G. Franceschini, and M. Pastorino, "Effective exploitation of the a-priori Information through a microwave imaging procedure based on the SMW for NDE/NDT applications," IEEE Trans. Geosci. Remote Sens., Vol. 43, No. 11, 2584-2592, 2005.
doi:10.1109/TGRS.2005.856630

12. Thomas, V., J. Yohannan, A. Lonappan, G. Bindu, and K. T. Mathew, "Localization of the investigation domain in electromagnetic imaging of buried 2-D dielectric pipelines with circular cross section," Progress In Electromagnetics Research, Vol. 61, 111-131, 2006.
doi:10.2528/PIER05110801

13. Bermani, E., S. Caorsi, and M. Raffetto, "An inverse scattering approach based on a neural network technique for the detection of dielectric cylinders buried in a lossy half-space," Progress In Electromagnetics Research, Vol. 26, 67-87, 2000.
doi:10.2528/PIER99052001

14. Benedetti, M., M. Donelli, G. Franceschini, M. Pastorino, and A. Massa, "Evaluation study of the effectiveness of the integrated GA-based strategy for the tomographic subsurface detection of defects," J. Opt. Soc. America A, Vol. 23, No. 6, 1311-1325, 2006.
doi:10.1364/JOSAA.23.001311

15. Li, F., X. Chen, and K. Huang, "Microwave imaging a buried object by the GA and using the S11 parameter," Progress In Electromagnetics Research, Vol. 85, 289-302, 2008.
doi:10.2528/PIER08081401

16. Azaro, R., A. Casagranda, D. Franceschini, and A. Massa, "An innovative fuzzy-logic-based strategy for an efftive exploitation of noisy inverse scattering data," Progress In Electromagnetics Research, Vol. 54, 283-302, 2005.
doi:10.2528/PIER05011802

17. Chien, W., "Inverse scattering of an un-uniform conductivity scatterer buried in a three-layer structure," Progress In Electromagnetics Research, Vol. 82, 1-18, 2008.
doi:10.2528/PIER08041503

18. Huang, C.-H., C.-C. Chiu, C.-L. Li, and K.-C. Chen, "Time domain inverse scattering of a two-dimensional homogenous dielectric object with arbitrary shape by particle swarm optimization," Progress In Electromagnetics Research, Vol. 82, 381-400, 2008.
doi:10.2528/PIER08031904

19. Joachimowicz, N., C. Pichot, and J.-P. Hugonin, "Inverse scattering: An iterative numerical method for electromagnetic imaging," IEEE Trans. Antennas Propag., Vol. 39, No. 12, 1742-1752, 1991.
doi:10.1109/8.121595

20. Chiu, C.-C. and C. J. Lin, "Image reconstruction of buried dielectric cylinders by TE wave illumination," Progress In Electromagnetics Research, Vol. 34, 271-284, 2001.
doi:10.2528/PIER01060603

21. Franceschini, D., M. Donelli, G. Franceschini, and A. Massa, "Iterative image reconstruction of two-dimensional scatterers illuminated by TE waves," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 4, 1162-1173, 2003.
doi:10.1109/TMTT.2003.809677

22. Azaro, R., M. Donelli, D. Franceschini, and A. Massa, "Multiscaling reconstruction of metallic targets from TE and TM experimental data," Microw. Opt. Tech. Lett., Vol. 48, No. 2, 322-324, 2006.
doi:10.1002/mop.21338

23. Uno, T. and S. Adachi, "Inverse scattering method for one-dimensional inhomogeneous layered media," IEEE Trans. Antenna Propag., Vol. 35, No. 12, 1456-1466, 1987.
doi:10.1109/TAP.1987.1144033

24. Cui, T. J. and C. H. Liang, "Inverse scattering method for one-dimensional inhomogeneous lossy medium by using a microwave networking technique," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 8, 1773-1781, 1995.
doi:10.1109/22.402259

25. Ma, J., W. C. Chew, C.-C. Lu, and J. Song, "Image reconstruction from TE scattering data using equation of strong permittivity fluctuation," IEEE Trans. Antennas Propag., Vol. 48, No. 6, 860-867, 2000.
doi:10.1109/8.865217

26. Lin, Y.-S., C.-C. Chiu, and Y.-C. Chen, "Image reconstruction for a perfectly conducting cylinder buried in a three-layer structure by TE wave illumination," Proc. Int. Conf. Computational Electromagnetics Applications (ICCEA 2004), Vol. 411, No. 414, 2004.

27. Hajihashemi, M. R. and M. El-Shenawee, "TE Versus TM for the shape reconstruction of 2-D PEC targets using the Level-Set algorithm," IEEE Trans. Geosci. Remote Sens., 2009.

28. Chou, C.-P. and Y.-W. Kiang, "Inverse scattering of dielectric cylinders by a cascade TE-TM method," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 10, 1923-1930, 1999.
doi:10.1109/22.795065

29. Kleinmann, R. E. and P. M. Van den Berg, "A modfied gradient method for two-dimensional problems in tomography," J. Comput. Appl. Math., Vol. 42, No. 1, 17-35, 1992.
doi:10.1016/0377-0427(92)90160-Y

30. Caorsi, S., M. Donelli, D. Franceschini, and A. Massa, "A new methodology based on an iterative multiscaling for microwave imaging," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 4, 1162-1173, 2003.
doi:10.1109/TMTT.2003.809677

31. Caorsi, S., M. Donelli, and A. Massa, "Detection, location and imaging of multiple scatterers by means of the iterative multiscaling method," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 4, 1217-1228, 2004.
doi:10.1109/TMTT.2004.825699

32. Caorsi, S., M. Donelli, and A. Massa, "Analysis of the stability and robustness of the iterative multi-scaling approach for microwave imaging applications," Radio Sci., Vol. 39, 1-17, 2004.

33. Donelli, M., D. Franceschini, G. Franceschini, and A. Massa, "Effective exploitation of multi-view data through the iterative multi-scaling method --- An experimental assessment," Progress In Electromagnetics Research, Vol. 54, 137-154, 2005.
doi:10.2528/PIER04111001

34. Pastorino, M., A. Massa, and S. Caorsi, "A microwave inverse scattering technique for image reconstruction based on a genetic algorithm," EEE Trans. Instrum. Meas., Vol. 49, No. 3, 573-578, 2000.
doi:10.1109/19.850397

35. Caorsi, S., A. Massa, and M. Pastorino, "A computational technique based on a real-coded genetic algorithm for microwave imaging purposes," IEEE Trans. Geosci. Remote Sens., Vol. 38, No. 4, 1697-1708, 2000.
doi:10.1109/36.851968

36. Massa, A., D. Franceschini, G. Franceschini, M. Raffetto, M. Pastorino, and M. Donelli, "Parallel GA-based approach for microwave imaging applications," IEEE Trans. Antennas Propag., Vol. 53, No. 10, 3118-3127, 2005.
doi:10.1109/TAP.2005.856311

37. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a particle swarm algorithm," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 4, 481-494, 2004.
doi:10.1163/156939304774113089

38. Donelli, M. and A. Massa, "A computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 5, 1761-1776, 2005.
doi:10.1109/TMTT.2005.847068

39. Donelli, M., G. Franceschini, A. Martini, and A. Massa, "An integrated multi-scaling strategy based on a particle swarm algorithm for inverse scattering problems," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 2, 298-312, 2006.
doi:10.1109/TGRS.2005.861412

40. Semnani, A. and M. Kamyab Hesari, "Truncated cosine fourier series expansion method for solving 2-D inverse scattering problems," Progress In Electromagnetics Research, Vol. 81, 73-97, 2008.
doi:10.2528/PIER07122404

41. Massa, A., M. Pastorino, and A. Randazzo, "Reconstruction of two-dimensional buried objects by a hybrid differential evolution method," Inverse Problems, Vol. 20, No. 6, 135-150, 2004.
doi:10.1088/0266-5611/20/6/S09

42. Rekanos, I. T., "Shape reconstruction of a perfectly conducting scatterer using differential evolution and particle swarm optimization," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 7, 1967-1974, 2008.
doi:10.1109/TGRS.2008.916635

43. Caorsi, S., A. Massa, M. Pastorino, M. Raffetto, and A. Randazzo, "Detection of buried inhomogeneous elliptic cylinders by a memetic algorithm," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2878-2884, 2003.
doi:10.1109/TAP.2003.817984

44. Caorsi, S., A. Massa, M. Pastorino, and A. Randazzo, "Electromagnetic detection of dielectric scatterers using phaseless synthetic and real data and the memetic algorithm," IEEE Trans. Geosci. Remote Sens., Vol. 41, No. 12, 2745-2753, 2003.
doi:10.1109/TGRS.2003.815676


© Copyright 2014 EMW Publishing. All Rights Reserved