1. Banasiak, R., R. Wajman, and M. Soleimani, "An efficient nodal Jacobian method for 3D electrical capacitance image reconstruction," Insight --- Non-destructive Testing and Condition Monitoring, Vol. 51, No. 1, 36-38, 2009.
doi:10.1784/insi.2009.51.1.36 Google Scholar
2. Calderon, A. P., "On an inverse boundary value problem," Seminar on Numerical Analysis and Its Applications to Continuum Physics (Rio de Janeiro), 65-73, Sociedade Brasileira de Matematica, 1980. Google Scholar
3. Cheney, M., D. Isaacson, and J. C. Newell, "Electrical impedance tomography," SIAM Review, Vol. 41, No. 1, 85-101, 1999.
doi:10.1137/S0036144598333613 Google Scholar
4. Dyakowski, T., L. F. C. Jeanmeure, W. B. Zimmerman, and W. Clark, "Direct flow-pattern identification using electrical capacitance tomography," Experimental Thermal and Fluid Science, Vol. 26, No. 6-7, 763-773, 2002.
doi:10.1016/S0894-1777(02)00186-3 Google Scholar
5. Nurge, M. A., "Electrical capacitance volume tomography with high contrast dielectrics using a cuboid sensor geometry," Measurement Science and Technology, Vol. 18, No. 5, 1511-1520, 2007.
doi:10.1088/0957-0233/18/5/042 Google Scholar
6. Olszewski, T., P. Brzeski, J. Mirkowski, A. Plaskowski, W. Smolik, and R. Szabatin, "Modular capacitance tomograph," Proc. of 4th International Symposium on Process Tomography, Warsaw, 2006. Google Scholar
7. Romanowski, A., K. Grudzien, R. Banasiak, R. A. Williams, and D. Sankowski, "Hopper flow measurement data visualization: Developments towards 3D," Proc. of 5th World Congress on Industrial Process Tomography, Bergen, Norway, 2006.
doi:10.2528/PIER09010202 Google Scholar
8. Soleimani, M., C. N. Mitchell, R. Banasiak, R. Wajman, and A. Adler, "Four-dimensional electrical capacitance tomography imaging using experimental data," Progress In Electromagnetics Research, Vol. 90, 171-186, 2009.
doi:10.1784/insi.2006.48.10.613 Google Scholar
9. Soleimani, M., "Three-dimensional electrical capacitance tomography imaging," Insight --- Non-destructive Testing and Condition Monitoring, Vol. 48, No. 10, 613-617, 2006.
doi:10.1088/0957-0233/17/8/009 Google Scholar
10. Wajman, R., R. Banasiak, L. Mazurkiewicz, T. Dyakowski, and D. Sankowski, "Spatial imaging with 3D capacitance measurements," Measurement Science and Technology, Vol. 17, No. 8, 2113-2118, August 2006. Google Scholar
11. Warsito, W. and L. S. Fan, "Development of 3-dimensional electrical capacitance tomography based on neural network multi-criterion optimization image reconstruction," Proc. of 3rd World Congress on Industrial Process Tomography, 942-947, 2003.
doi:10.1109/JSEN.2007.891952 Google Scholar
12. Warsito, W., Q. Marashdeh, and L. S. Fan, "Electrical capacitance volume tomography," IEEE Sensors Journal, Vol. 7, No. 3-4, 525-535, 2007.
doi:10.1088/0957-0233/12/12/323 Google Scholar
13. Warsito, W. and L. S. Fan, "Neural network based multi-criterion optimization image reconstruction technique for imaging two- and three-phase flow systems using electrical capacitance tomography," Measurement Science and Technology, Vol. 12, 2198-2210, 2001. Google Scholar
14. Williams, R. A. and M. S. Beck, Process Tomography, Principles, Techniques and Applications, Butterworth-Heinemann, 1995.
doi:10.1088/0957-0233/10/11/315
15. Yang, W. Q., D. M. Spink, T. A. York, and H. McCann, "An image-reconstruction algorithm based on Landweber's iteration method for electrical-capacitance tomography," Measurement Science and Technology, Vol. 10, 1065-1069, 1999.
doi:10.1088/0957-0233/14/1/201 Google Scholar
16. Yang, W. Q. and L. Peng, "Image reconstruction algorithms for electrical capacitance tomography," Measurement Science and Technology, Vol. 14, R1-R13, 2003.
doi:10.2528/PIER09052003 Google Scholar
17. Goharian, M., M. Soleimani, and G. Moran, "A trust region subproblem for 3D electrical impedance tomography inverse problem using experimental data," Progress In Electromagnetics Research, Vol. 94, 19-32, 2009.
doi:10.1163/156939308786390021 Google Scholar
18. Chen, G. P., W. B. Yu, Z. Q. Zhao, Z. P. Nie, and Q. H. Liu, "The prototype of microwave-induced thermo-acoustic tomography imaging by time reversal mirror," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11-12, 1565-1574, 2008.
doi:10.2528/PIER08052302 Google Scholar
19. Cheng, X., B. I.Wu, H. Chen, and J. A. Kong, "Imaging of objects through lossy layer with defects," Progress In Electromagnetics Research, Vol. 84, 11-26, 2008.
doi:10.1163/156939307779378790 Google Scholar
20. Huang, C. H., Y. F. Chen, and C. C. Chiu, "Permittivity distribution reconstruction of dielectric objects by a cascaded method," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 2, 145-159, 2007.
doi:10.2528/PIER08062904 Google Scholar
21. Franceschini, G., M. Donelli, D. Franceschini, M. Benedetti, P. Rocca, and A. Massa, "Microwave imaging from amplitude-only data-advantages and open problems of a two-step multi-resolution strategy," Progress In Electromagnetics Research, Vol. 83, 397-412, 2008.
doi:10.1163/156939309789476301 Google Scholar
22. Chen, X. D., "Subspace-based optimization method in electric impedance tomography," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1397-1406, 2009.
doi:10.2528/PIER09052503 Google Scholar
23. Polydorides, N., "Linearization error in electrical impedance tomography," Progress In Electromagnetics Research, Vol. 93, 323-337, 2009. Google Scholar