PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 101 > pp. 349-374

AN INNOVATIVE MULTI-SOURCE STRATEGY FOR ENHANCING THE RECONSTRUCTION CAPABILITIES OF INVERSE SCATTERING TECHNIQUES

By F. Caramanica and G. Oliveri

Full Article PDF (472 KB)

Abstract:
Active microwave imaging techniques are aimed at reconstructing an unknown region under test by means of suitable inversion algorithms starting from the measurement of the scattered electromagnetic field. Within such a framework, this paper focuses on an innovative strategy that fully exploits the information arising from the illumination of the investigation domain with different configurations as well as radiation patterns of the probing sources. The proposed approach can be easily integrated with multiview techniques and, unlike multifrequency methods, it does not require additive a-priori information on the dielectric nature of the scatterer under test. A large number of numerical simulations concerned with 2D geometries confirms the effectiveness of the inversion strategy as well as its robustness with respect to noise on data. Moreover, the results of a comparative study with single-source methodologies further point out the advantages and potentialities of the new approach.

Citation:
F. Caramanica and G. Oliveri, "An innovative multi-source strategy for enhancing the reconstruction capabilities of inverse scattering techniques," Progress In Electromagnetics Research, Vol. 101, 349-374, 2010.
doi:10.2528/PIER09120803
http://www.jpier.org/PIER/pier.php?paper=09120803

References:
1. Abubakar, A., P. M. Van den Berg, and J. T. Fokkema, "Time-lapse TM-polarization electromagnetic imaging," Subsurf. Sensing Tech. Applic., Vol. 4, 117-135, 2003.
doi:10.1023/A:1023067631716

2. Yu, Y., T. Yu, and L. Carin, "Three-dimensional inverse scattering of a dielectric target embedded in a lossy half-space," IEEE Trans. Geosci. Remote Sensing, Vol. 42, 957-973, 2004.
doi:10.1109/TGRS.2003.820601

3. Hoole, S. R. H., S. Subramaniam, R. Saldanha, J.-L. Coulomb, and J.-C. Sabonnadiere, "Inverse problem methodology and finite elements in the identifications of cracks, sources, materials, and their geometry in inaccessible locations," IEEE Trans. Magn., Vol. 27, 3433-3443, 1991.
doi:10.1109/20.79086

4. Bolomey, J. C., Frontiers in Industrial Process Tomography, Engineering Foundation, 1995.

5. Bolomey, J. C., "Recent European developments in active microwave imaging for industrial, scientific, and medical applications," IEEE Trans. Microwave Theory Tech., Vol. 37, 2109-2117, 1991.
doi:10.1109/22.44129

6. Louis, K., "Medical imaging: State of the art and future development," Inverse Problems, Vol. 8, 709-738, 1992.
doi:10.1088/0266-5611/8/5/003

7. Caorsi, S., A. Massa, M. Pastorino, and A. Rosani, "Microwave medical imaging: Potentialities and limitations of a stochastic optimization technique," IEEE Trans. Microwave Theory Tech., Vol. 52, 1909-1916, 2004.
doi:10.1109/TMTT.2004.832016

8. Colton, D. and R. Kress, Inverse Acoustics and Electromagnetic Scattering Theory, Springer-Verlag, Berlin, Germany, 1992.

9. Bertero, M. and P. Boccacci, Introduction to Inverse Problem in Imaging, IoP Publishing, Philadelphia, 1998.

10. Denisov, A. M., Elements of Theory of Inverse Problems, VSP, Utrecht, The Netherlands, 1999.

11. Belkebir, K., J. M. Elissalt, J. M. Geffrin, and C. Pichot, "Newton-Kantorovich and modified gradient --- Inversion algorithms applied to Ipswich data," IEEE Antennas Propag. Mag., Vol. 38, 41-43, 1996.
doi:10.1109/MAP.1996.511952

12. Franchois, A. and C. Pichot, "Microwave imaging-complex permittivity reconstruction with a Levenberg-Marquardt method," IEEE Trans. Antennas Propagat., Vol. 45, 203-215, 1997.
doi:10.1109/8.560338

13. Pastorino, M., A. Massa, and S. Caorsi, "A microwave inverse scattering technique for image reconstruction based on a genetic algorithm," IEEE Trans. Instrum. Meas., Vol. 49, No. 3, 573-578, Jun. 2000.
doi:10.1109/19.850397

14. Van den Berg, P. M. and A. Abubakar, "Contrast source inversion method: State of art," Progress In Electromagnetics Research, Vol. 34, 189-218, 2001.
doi:10.2528/PIER01061103

15. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a particle swarm algorithm," Journal of Electromagnetic Waves and Applications, Vol. 18, 481-494, 2004.
doi:10.1163/156939304774113089

16. Caorsi, S., G. L. Gragnani, and M. Pastorino, "An approach to microwave imaging using a multiview moment method solution for a two-dimensional infinite cylinder," IEEE Trans. Microwave Theory Tech., Vol. 39, 1062-1067, 1991.
doi:10.1109/22.81683

17. Bucci, O. M. and T. Isernia, "Electromagnetic inverse scattering: retrievable information and measurements strategies," Radio Science, 2123-2138, 1997.
doi:10.1029/97RS01826

18. Belkebir, K., R. Kleinman, and C. Pichot, "Microwave imaging --- Location and shape reconstruction from multifrequency scattering data," IEEE Trans. Microwave Theory Tech., Vol. 45, 469-475, 1997.
doi:10.1109/22.566625

19. Bucci, O. M., L. Crocco, T. Isernia, and V. Pascazio, "Inverse scattering problems with multifrequency data: Reconstruction capabilities and solution strategies," IEEE Trans. Geosci. Remote Sensing, Vol. 38, 1749-1756, 2000.
doi:10.1109/36.851974

20. Franceschini, D., M. Donelli, R. Azaro, and A. Massa, "Dealing with multifrequency scattering data through the IMSA," IEEE Trans. Antennas Propagat., Vol. 55, 2412-2417, 2007.
doi:10.1109/TAP.2007.901909

21. Zhang, W., L. Li, and F. Li, "Multifrequency imaging from intensity-only data using the phaseless data distorted Rytov iterative method," IEEE Trans. Antennas Propagat., Vol. 57, 290-295, 2009.
doi:10.1109/TAP.2008.2009785

22. Chew, W. C. and J.-H. Lin, "A frequency-hopping approach for microwave imaging of large inhomogeneous bodies," IEEE Microwave Guided Wave Lett., Vol. 5, 439-441, 1995.
doi:10.1109/75.481854

23. Caorsi, S., M. Donelli, D. Franceschini, and A. Massa, "A new methodology based on an iterative multi-scaling for microwave imaging," IEEE Trans. Microwave Theory Tech., Vol. 51, 1162-1173, 2003.
doi:10.1109/TMTT.2003.809677

24. Donelli, M., D. Franceschini, P. Rocca, and A. Massa, "Three-dimensional microwave imaging problems solved through an efficient multi-scaling particle swarm optimization," IEEE Trans. Geosci. Remote Sens., Vol. 47, 1467-1481, 2009.
doi:10.1109/TGRS.2008.2005529

25. Franceschini, D., M. Donelli, G. Franceschini, and A. Massa, "Iterative image reconstruction of two-dimensional scatterers illuminated by TE waves," IEEE Trans. Microwave Theory Techn., Vol. 54, 1484-1494, Apr. 2006.
doi:10.1109/TMTT.2006.871921

26. Kaas, M., W. Rieger, C. Huber, G. Lehner, and W. M. Rucker, "Improvement of inverse scattering results by combining TM-and TE-polarized probing waves using an iterative adaptation technique," IEEE Trans. Magn., Vol. 35, 1574-1577, 1999.
doi:10.1109/20.767274

27. Chou, C.-P. and Y.-W. Kiang, "Inverse scattering of dielectric cylinders by a cascaded TE-TM method," IEEE Trans. Microwave Theory Techn., Vol. 47, 1923-1930, 1999.
doi:10.1109/22.795065

28. Poli, L. and P. Rocca, "Exploitation of TE-TM scattering data for microwave imaging through the multi-scaling reconstruction strategy," Progress In Electromagnetics Research, Vol. 99, 245-260, 2009.
doi:10.2528/PIER09101105

29. Isernia, T., V. Pascazio, and R. Pierri, "On the local minima in a tomographic imaging technique," IEEE Trans. Geosci. Remote Sensing, Vol. 39, 1596-1607, 2001.
doi:10.1109/36.934091

30. Jones, D. S., The Theory of Electromagnetism, Pergamon Press, Oxford, UK, 1964.

31. Richmond, J. H., "Scattering by a dielectric cylinder of arbitrary cross section shape," IEEE Trans. Antennas Propagat., Vol. 13, 334-341, 1965.
doi:10.1109/TAP.1965.1138427

32. Caorsi, S., A. Massa, and M. Pastorino, "Numerical assessment concerning a focused microwave diagnostic method for medical applications," IEEE Trans. Antennas Propagat., Vol. 48, 1815-1830, 2000.
doi:10.1109/8.841897

33. Kohn, R. V. and A. McKenney, "Numerical implementation of a variational method for electrical impedance tomography," Inverse Problems, Vol. 6, 389-414, 1990.
doi:10.1088/0266-5611/6/3/009

34. Caorsi, S., A. Massa, and M. Pastorino, "A computational technique based on a real-coded genetic algorithm for microwave imaging purposes," IEEE Trans. Geosci. Remote Sens., Vol. 38, 1697-1708, 2000.
doi:10.1109/36.851968

35. Caorsi, S., A. Massa, M. Pastorino, and A. Randazzo, "Electromagnetic detection of dielectric scatterers using phaseless synthetic and real data and the memetic algorithm," IEEE Trans. Geosci. Remote Sens., Vol. 41, 2745-2753, 2003.
doi:10.1109/TGRS.2003.815676

36. Donelli, M. and A. Massa, "A computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers," IEEE Trans. Microwave Theory Techn., Vol. 53, 1761-1776, 2004.

37. Rocca, P., M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, "Evolutionary optimization as applied to inverse problems," Inverse Problems | 25th Year Special Issue of Inverse Problems, Invited Topical Review, Vol. 25, 2009.
doi:10.1088/0266-5611/13/6/013

38. Van den Berg, P. M. and R. E. Kleinman, "A contrast source inversion method," Inverse Problems, Vol. 13, 1607-1620, 1997.
doi:10.1109/TMTT.2004.825699

39. Caorsi, S., M. Donelli, and A. Massa, "Detection, location and imaging of multiple scatterers by means of the iterative multiscaling method," IEEE Trans. Microwave Theory Techn., Vol. 52, 1217-1228, 2004.

40. Caorsi, S., M. Donelli, and A. Massa, "Analysis of the stability and robustness of the iterative multi-scaling approach for microwave imaging applications," Radioscience, Vol. 39, 2004.
doi:10.1109/LGRS.2005.853200

41. Franceschini, G., D. Franceschini, and A. Massa, "Full-vectorial three-dimensional microwave imaging through the iterative multi-scaling strategy --- A preliminary assessment," IEEE Geosci. Remote Sens. Lett., Vol. 2, 428-432, 2005.
doi:10.1109/TGRS.2005.861412

42. Donelli, M., G. Franceschini, A. Martini, and A. Massa, "An integrated multi-scaling strategy based on a particle swarm algorithm for inverse scattering problems," IEEE Trans. Geosci. Remote Sens., Vol. 44, 298-312, 2006.

43. Benedetti, M., D. Lesselier, M. Lambert, and A. Massa, "A multi-resolution technique based on shape optimization for the reconstruction of homogeneous dielectric objects," Inverse Problems, Vol. 25, 1-26, 2009.
doi:10.2528/PIER04111001

44. Donelli, M., D. Franceschini, G. Franceschini, and A. Massa, "E®ective exploitation of multi-view data through the iterative multi-scaling method --- An experimental assessment," Progress In Electromagnetics Research, Vol. 54, 137-154, 2005.
doi:10.1109/TGRS.2006.881753

45. Franceschini, G., M. Donelli, R. Azaro, and A. Massa, "Inversion of phaseless total field data using a two-step strategy based on the iterative multi-scaling approach," IEEE Trans. Geosci. Remote Sens., Vol. 44, 3527-3539, 2006.
doi:10.1109/TAP.2007.908791

46. Benedetti, M., A. Casagranda, M. Donelli, and A. Massa, "An adaptive multi- scaling imaging technique based on a fuzzy-logic strategy for dealing with the uncertainty of noisy scattering data," IEEE Trans. Antennas Propagat., Vol. 55, 3265-3278, 2007.

47. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley, New York, 1997.
doi:10.1109/74.584491

48. Duchene, B., D. Lesselier, and R. E. Kleinman, "Inversion of the 1996 Ipswich data using binary specialization of modified gradient methods," IEEE Antennas Propag. Mag., Vol. 39, 9-12, 1997.
doi:10.1109/TAP.2005.856311

49. Massa, A., D. Franceschini, G. Franceschini, M. Raffetto, M. Pastorino, and M. Donelli, "Parallel GA-based approach for microwave imaging applications," IEEE Trans. Antennas Propagat., Vol. 53, 3118-3127, 2005.


© Copyright 2014 EMW Publishing. All Rights Reserved