PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 101 > pp. 231-239

POLARIZATION INSENSITIVE METAMATERIAL ABSORBER WITH WIDE INCIDENT ANGLE

By B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang

Full Article PDF (696 KB)

Abstract:
This paper presents the design, fabrication and measurement of a polarization insensitive microwave absorber based on metamaterial. The unit cell of the metamaterial consists of four-fold rotational symmetric electric resonator and cross structure printed on each side of a print circuit board to realize both electric and magnetic resonances to achieve efficient absorption of the incident microwave energy. Both the full wave electromagnetic simulation and the measurement on the fabricated absorber demonstrate high microwave absorption up to 97% for different polarized incident electromagnetic waves. To understand the mechanism, analysis is carried out for the electromagnetic field distribution at the resonance frequency which reveals the working mode of the metamaterial absorber. Moreover, it is verified by experiment that the absorption of this kind of metamaterial absorber remains over 90% with wide incident angle ranging from 0° to 60° for both transverse electric wave and transverse magnetic wave.

Citation:
B. Zhu, Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110
http://www.jpier.org/pier/pier.php?paper=10011110

References:
1. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002

3. Wiltshire, M. C. K., J. B. Pendry, I. R. Yong, D. J. Larkman, D. J. Gilderdale, and J. V. Hajnal, "Microstructured magnetic materials for RF flux guides in magnetic resonance imaging Science,", Vol. 291, 849-851, 2001.

4. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

5. Gokkavas, M., K. Guven, I. Bulu, K. Aydin, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Experimental demonstration of a left-handed metamaterial operating at 100 GHz," Phys. Rev. B, Vol. 73, 193103-193106, 2006.
doi:10.1103/PhysRevB.73.193103

6. Linden, S., C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science, Vol. 306, 1351-1353, 2004.
doi:10.1103/PhysRevLett.95.137404

7. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett., Vol. 95, 137404-137407, 2005.
doi:10.1126/science.1157566

8. Yao, J., Z. Liu, Y. Liu, Y. Wang, C. Sum, G. Bartal, A. M. Stacy, and X. Zhang, "Optical negative refraction in bulk metamaterials of nanowires," Science, Vol. 321, 930, 2008.

9. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley, New York, 2006.
doi:10.1126/science.1133628

10. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1166949

11. Liu, R., C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science, Vol. 323, 366-369, 2009.
doi:10.1103/PhysRevLett.85.3966

12. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
doi:10.1364/OE.16.018057

13. Zhao, J., Y. Feng, B. Zhu, and T. Jiang, "Sub-wavelength image manipulating through compensated anisotropic metamaterial prisms," Opt. Express, Vol. 16, 18057-18066, 2008.
doi:10.2528/PIERL07111809

14. Lagarkov, A. N., V. N. Kisel, and V. N. Semenenko, "Wideangle absorption by the use of a metamaterial plate," Progress In Electromagnetics Research Letters, Vol. 1, 35-44, 2008.
doi:10.1103/PhysRevLett.100.207402

15. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402-1-207402-4, 2008.
doi:10.1364/OE.16.007181

16. Tao, H., N. I. Landy, C. M. Bingham, X. Zhan, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express, Vol. 16, 7181-7188, 2008.
doi:10.2528/PIERL09012003

17. Wang, J. F., S. B. Qu, Z. T. Fu, H. Ma, Y. M. Yang, X.Wu, Z. Xu, and M. J. Hao, "Three-dimensional metamaterial microwave absorbers composed of coplanar magnetic and electric resonators," Progress In Electromagnetics Research Letters, Vol. 7, 15-24, 2009.

18. Wang, B., T. Koschny, and C. M. Soukoulis, "Wide-angle and polarization-independent chiral metamaterial absorber," Phys. Rev. B, Vol. 80, 033108-1-033108-4, 2009.
doi:10.1103/PhysRevB.79.033101

19. Diem, M., T. Koschny, and C. M. Soukoulis, "Wide-angle perfect absorber/thermal emitter in the terahertz regime," Phys. Rev. B, Vol. 79, 033101-1-033101-4, 2009.

20. Chen, X., T. M. Grzegorczyk, B. Wu, J. Jr Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608-1-016608-7, 2004.


© Copyright 2014 EMW Publishing. All Rights Reserved