PIER | |
Progress In Electromagnetics Research | ISSN: 1070-4698, E-ISSN: 1559-8985 |
Home > Vol. 102 > pp. 125-141
OPTIMAL CONSTRAINED FIELD FOCUSING FOR HYPERTHERMIA CANCER THERAPY: A FEASIBILITY ASSESSMENT ON REALISTIC PHANTOMSBy D. A. M. Iero, T. Isernia, A. F. Morabito, I. Catapano, and L. CroccoAbstract: Microwave hyperthermia is a non-invasive treatment for cancer which exploits a selective heating of tissues induced through focused electromagnetic fields. In order to improve the treatment's efficiency, while minimizing side effects, it is necessary to achieve a constrained focusing of the field radiated by the sources. To address this issue, in this paper we present an innovative and computationally effective approach to the field focusing for hyperthermia. The proposed method, after establishing the number of sources to be used, determines the excitations of the given set of sources such to produce a maximum field in a given region of space subject to a completely arbitrary mask for the field amplitude in all other regions. As the approach relies on a formulation of the problem in terms of convex programming, it is able to achieve the globally optimal solution without the adoption of computationally intensive global optimization procedures. A preliminary assessment of the feasibility is given on hyperthermia therapy of breast cancer by means of numerical examples run on realistic 2D phantoms of female breast.
Citation:
References:
2. Falk, M. H. and R. D. Issels, "Hyperthermia in oncology," International Journal of Hyperthermia, Vol. 17, 1-18, 2001. 3. Van Der Zee, J., B. van der Holt, P. J. M. Rietveld, P. A. Helle, A. J. Wijnmaalen, W. L. J. van Putten, and G. C. van Rhoon, "Reirradiation combined with hyperthermia in recurrent breast cancer results in a worthwhile local palliation," Br. Jour. Cancer, Vol. 79, 483-490, 1999. 4. Kronberger, L., P. Wagner, M. Puchinger, H. Stranzl, and P. Kohek, "Radiofrequency-hyperthermia in combination with chemo and radiotherapy in palliative treatment of breast cancer: A case report ," The Internet Journal of Surgery, Vol. 5, 2004.
5. Fenn, A. J., Adaptive Phased Array Thermotherapy for Cancer, Artech House, London, 2008.
6. Gee, W., S.-W. Lee, N. K. Bong, C. A. Cain, R. Mittra, and R. L. Magin, "Focused array hyperthermia applicator: Theory and experiment ," IEEE Trans. Biomed. Eng., Vol. 31, 38-46, 1984. 7. Castrillo, V. U., F. Chiadini, G. d'Ambrosio, V. Fiumara, R. Massa, G. Panariello, I. M. Pinto, and A. Scaglione, Waveguide slot applicators for microwave heating, ICECom2003, 17th Int. Conf. on Appl. EM and Comm., 49-51, Dubrovnik, Croatia, 2003.
8. Hand, J. W., J. L. Cheetham, and A. J. Hand, "Absorbed power distributions from coherent microwave arrays for localized hyperthermia," IEEE Trans. Microwave Theory Tech., Vol. 34, 484-489, 1986. 9. Loane, J., H. Ling, B. F. Wang, and S. W. Lee, "Experimental investigation of a retro-focused microwave hyperthermia applicator: Conjugate-field matching scheme," IEEE Trans. Microwave Theory Tech., Vol. 34, 490-494, 1986. 10. Jouvie, F., J.-C. Bolomey, and G. Gaboriaaud, "Discussion of capabilities of microwave phased arrays for hyperthermia treatment of neck tumors ," IEEE Trans. Microwave Theory Tech., Vol. 34, 495-501, 1986. 11. Paulides, M. M., S. H. J. A. Vossen, A. P. M. Zwamborn, and G. C. van Roon, "Theoretical investigation into the feasibility to deposit RF energy centrally in the head-and-neck region," Int. J. Radiation Oncology Biol. Phys., Vol. 63, 634-642, 2005.
12. Wlodarczyk, W., J. Nadobny, P. Wust, G. Monich, P. Deuhard, and R. Felix, "Systematic design of antennas for cylindrical 3D phased array hyperthermia applicator," Proc. IEEE International Symposium Antennas and Propagation Society, Vol. 2, 1004-1007, 1999.
13. Krairiksh, M., T. Wakabayashi, and W. Kiranon, "A spherical slot array applicator for medical applications," IEEE Trans. Microwave Theory Tech., Vol. 43, 78-86, 1995. 14. Gupta, R. C. C. and S. P. Singh, "Elliptically bent slotted waveguide conformal focused array for hyperthermia treatment of tumors in curved region of human body ," Progress In Electromagnetics Research, Vol. 62, 107-125, 2006. 15. Deng, T., "Optimization of SAR distributions in liver and lung regions irradiated by the H-horn annular phased array hyperthermia system ," IEEE Trans. Microwave Theory Tech., Vol. 39, 852-856, 1991. 16. Gong, Y. and G. Wang, "Superficial tumor hyperthermia with flat left-handed metamaterial lens," Progress In Electromagnetics Research, Vol. 98, 389-405, 2009. 17. Arunachalam, K., S. S. Udpa, and L. Udpa, Microwave breast cancer hyperthermia using deformable mirror, IEEE Antennas and Propagation Society International Symposiumm, APS2006, 2191-2194, 2006.
18. Fletcher, R., Practical Methods of Optimization, Wiley, New York, 1990.
19. Converse, M., E. J. Bond, S. C. Hagness, and B. D. van Veen, "Ultrawide-band microwave space-time beamforming for hyper-thermia treatment of breast cancer: A computational feasibilty study ," IEEE Trans. Microwave Theory Tech., Vol. 52, 1876-1889, 2004. 20. Converse, M., E. J. Bond, S. C. Hagness, and B. D. van Veen, "A computational study of ultra-wideband versus narrowband microwave hypertermia for breast cancer treatment," IEEE Trans. Microwave Theory Tech., Vol. 54, 2169-2180, 2006. 21. Isernia, T. and G. Panariello, "Optimal focusing of scalar fields subject to arbitrary upper bounds," Electronics Letters, Vol. 34, 162-164, 1998. 22. Isernia, T., P. Di Iorio, and F. Soldovieri, "A simple and effective approach for the optimal focusing of scalar fields subject to arbitrary upper bounds," IEEE Transactions on Antennas and Propagation, Vol. 48, 1837-1847, 2000. 23. Armitage, D. W., H. H. Le Veen, and R. Pethig, "Radiofrequency-induced hyperthermia: Computer simulation of specific absorption rate distributions using realistic anatomical models," Physics in Medicine and Biology, Vol. 28, 31-42, 1983. 24. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phisycs in Medicine and Biology, Vol. 52, 2637-2656, 2007. 25. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, W. Temple, D. Mew, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissue obtained from cancer surgeries ," Phisycs in Medicine and Biology, Vol. 52, 6093-6115, 2007. 26. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. van Veem, and S. C. Hagness, "Database of 3D grid-based numerical breast phantom for use in computational electromagnetics simulations,", http://uwcem.ece.wisc.edu/home.htm.
27. Bucci, O. M. and T. Isernia, "Electromagnetic inverse scattering: retrievable information and measurement strategies," Radio Sci., Vol. 32, 2123-2137, 1997. 28. Bucci, O. M., C. Gennarelli, and C. Savarese, "Representation of electromagnetic fields over arbitrary surfaces by a finite and non redundant number of samples," IEEE Transactions on Antennas and Propagation, Vol. 46, 351-359, 1998. 29. Catapano, I., L. Di Donato, L. Crocco, O. M. Bucci, A. F. Morabito, T. Isernia, and R. Massa, "On quantitative microwave tomography of female breast," Progress In Electromagnetics Research, Vol. 97, 75-93, 2009. 30. Collin, R., Antennas and Radiowave Propagation, Mcgraw Hill, New York, 1985.
31. Romeo, S., L. Di Donato, O. M. Bucci, I. Catapano, L. Crocco, M. R. Scarfi, and R. Massa, "Microwave breast imaging: Dielectric characterization of TX-100 based mixtures for experimental phantoms,", submitted, 2010.
32. Richmond, J., "Scattering by a dielectric cylinder of arbitrary cross section shape," IEEE Transactions on Antennas and Propagation, Vol. 13, 334-341, 1965. 33. Neufeld, E., M. Paulides, M. Capstick, G. C. van Rhoon, and N. Kuster, "Latest advances in EM hyperthermia cancer treat ments," International Conference on Electromagnetics in Advanced Applications, ICEAA2009 , Torino, Italy, Sept. 2009.
34. Bolomey, J. C., L. Jofre, and G. Peronnet, "On the possible use of microwave-active imaging for remote thermal sensing," IEEE Transactions on Microwave Theory and Techniques, Vol. 31, 777-781, 1983. 35. Rius, J. M., C. Pichot, L. Jofre, J. C. Bolomey, N. Joachimowicz, A. Broquetas, and M. Ferrando, "Planar and cylindrical active microwave temperature imaging: Numerical simulations," IEEE Transactions on Medical Imaging, Vol. 11, 457-469, 1992. 36. Sawaragi, Y., H. Nakayama, and T. Tanino, "Theory of Multiobjective Optimization,", Academic Press Inc., Orlando, 1985.
37. Voyer, D., L. Nicolas, R. Perrussel, and F. Musy, "Comparison problem," Progress In Electromagnetics Research B, Vol. 11, 189-204, 2009. |