1. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, Apr. 2001.
doi:10.1126/science.1058847 Google Scholar
2. Eleftheriades, G. V. and K. G. Balmain, Negative-refraction Metamaterials: Fundamental Principles and Applications, Wiley-IEEE, New Jersey, 2005.
doi:10.1002/0471744751
3. Gokkavas, M., K. Güven, I. Bulu, K. Aydın, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Özbay, "Experimental demonstration of a left-handed metamaterial operating at 100 GHz," Phys. Rev. B., Vol. 73, No. 19, 193103-1-193103-4, May 2006.
doi:10.1103/PhysRevB.73.193103 Google Scholar
4. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, Nov. 2006. Google Scholar
5. Moss, C. D., T. M. Gregorczyk, Y. Zhang, and J. A. Kong, "Numerical studies of left handed metamaterials," Progress In Electromagnetics Research, Vol. 35, 315-334, 2002.
doi:10.2528/PIER02052409 Google Scholar
6. Gürel, L., Ö. Ergül, A. Ünal, and T. Malas, "Fast and accurate analysis of large metamaterial structures using the multilevel fast multipole algorithm," Progress In Electromagnetics Research, Vol. 95, 179-198, 2009.
doi:10.2528/PIER09060106 Google Scholar
7. Ylä-Oijala, P., Ö. Ergül, L. Gürel, and M. Taskinen, "Efficient surface integral equation methods for the analysis of complex metamaterial structures," Proc. European Conf. on Antennas and Propagation (EuCAP), 1560-1564, 2009. Google Scholar
8. Ergül, Ö., T. Malas, Ç. Yavuz, A. Ünal, and L. Gürel, "Computational analysis of complicated metamaterial structures using MLFMA and nested preconditioners," Proc. European Conf. on Antennas and Propagation (EuCAP), 2007. Google Scholar
9. Song, J., C.-C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1488-1493, Oct. 1997.
doi:10.1109/8.633855 Google Scholar
10. Chew, W. C., J.-M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Boston, MA, 2001.
11. Ergül, Ö., Ç. Yavuz, A. Ünal, and L. Gürel, "Investigation of various metamaterial structures using multilevel fast multipole algorithm," Proc. IEEE Antennas and Propagation Soc. Int. Symp., 1845-1848, 2007. Google Scholar
12. Greengard, L., J. Huang, V. Rokhlin, and S. Wandzura, "Accelerating fast multipole methods for the Helmholtz equation at low frequencies," IEEE Comput. Sci. Eng., Vol. 5, 32-38, Jul.-Sep. 1998. Google Scholar
13. Jiang, L. J. and W. C. Chew, "Low-frequency fast inhomogeneous planewave algorithm (LF-FIPWA)," Microw. Opt. Technol. Lett., Vol. 40, No. 2, 117-122, Jan. 2004.
doi:10.1002/mop.11302 Google Scholar
14. Darve, E. and P. Have, "A fast multipole method for Maxwell equations stable at all frequencies," Phil. Trans. R. Soc. Lond. A, Vol. 362, 603-628, Mar. 2004. Google Scholar
15. Wallén, H. and J. Sarvas, "Translation procedures for broadband MLFMA," Progress In Electromagnetics Research, Vol. 55, 47-78, 2005.
doi:10.2528/PIER05021001 Google Scholar
16. Xuan, L., A. Zhu, R. J. Adams, and S. D. Gedney, "A broadband multilevel fast multipole algorithm," Proc. IEEE Antennas and Propagation Soc. Int. Symp., 1195-1198, 2004. Google Scholar
17. Chew, W. C., S. Koc, J. M. Song, C. C. Lu, and E. Michielssen, "A succinct way to diagonalize the translation matrix in three dimensions," Microw. Opt. Technol. Lett., Vol. 15, No. 3, 144-147, Jun. 1997.
doi:10.1002/(SICI)1098-2760(19970620)15:3<144::AID-MOP7>3.0.CO;2-G Google Scholar
18. Zhao, J.-S. and W. C. Chew, "Three dimensional multilevel fast multipole algorithm from static to electrodynamic," Microw. Opt. Technol. Lett., Vol. 26, No. 1, 43-48, Jul. 2000.
doi:10.1002/(SICI)1098-2760(20000705)26:1<43::AID-MOP14>3.0.CO;2-8 Google Scholar
19. Zhao, J.-S. and W. C. Chew, "Applying matrix rotation to the three-dimensional low-frequency multilevel fast multipole algorithm," Microw. Opt. Technol. Lett., Vol. 26, No. 2, 105-110, Jul. 2000.
doi:10.1002/1098-2760(20000720)26:2<105::AID-MOP11>3.0.CO;2-W Google Scholar
20. Zhao, J.-S. and W. C. Chew, "Applying LF-MLFMA to solve complex PEC structures," Microw. Opt. Technol. Lett., Vol. 28, No. 3, 155-160, Feb. 2001.
doi:10.1002/1098-2760(20010205)28:3<155::AID-MOP3>3.0.CO;2-H Google Scholar
21. Chu, Y.-H. and W. C. Chew, "A multilevel fast multipole algorithm for electrically small composite structures," Microw. Opt. Technol. Lett., Vol. 43, No. 3, 202-207, Nov. 2004.
doi:10.1002/mop.20419 Google Scholar
22. Jiang, L. J. and W. C. Chew, "A mixed-form fast multipole algorithm," IEEE Trans. Antennas Propag., Vol. 53, No. 12, 4145-4156, Dec. 2005.
doi:10.1109/TAP.2005.859915 Google Scholar
23. Otani, Y. and N. Nishimura, "A periodic FMM for Maxwell's equations in 3D and its applications to problems related to photonic crystals," J. Comput. Phys., Vol. 227, No. 9, 4630-4652, Apr. 2008.
doi:10.1016/j.jcp.2008.01.029 Google Scholar
24. Lee, J., J. Zhang, and C.-C. Lu, "Sparse inverse preconditioning of multilevel fast multipole algorithm for hybrid integral equations in electromagnetics," IEEE Trans. Antennas and Propagat., Vol. 52, No. 9, 2277-2287, Sep. 2004.
doi:10.1109/TAP.2004.834084 Google Scholar
25. Malas, T. and L. Gürel, "Accelerating the multilevel fast multipole algorithm with the sparse-approximate-inverse (SAI) preconditioning," SIAM J. Sci. Comput., Vol. 31, No. 3, 1968-1984, Mar. 2009.
doi:10.1137/070711098 Google Scholar
26. Koc, S., J. M. Song, and W. C. Chew, "Error analysis for the numerical evaluation of the diagonal forms of the scalar spherical addition theorem," SIAM J. Numer. Anal., Vol. 36, No. 3, 906-921, 1999.
doi:10.1137/S0036142997328111 Google Scholar
27. Wu, B.-I., W.Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701 Google Scholar
28. Wongkasem, N., A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, "Novel broadband terahertz negative refractive index metamaterials: Analysis and experiment," Progress In Electromagnetics Research, Vol. 64, 205-218, 2006.
doi:10.2528/PIER06071104 Google Scholar
29. Grzegorczyk, T. M. and J. A. Kong, "Review of left-handed metamaterials: Evolution from theoretical and numerical studies to potential applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2053-2064, 2006.
doi:10.1163/156939306779322620 Google Scholar
30. Yu, A., F. Yang, and A. Z. Elsherbeni, "A dual band circularly polarized ring antenna based on composite right and left handed metamaterials," Progress In Electromagnetics Research, Vol. 78, 73-81, 2008.
doi:10.2528/PIER07082902 Google Scholar
31. Wu, G.-L., W. Mu, X.-W. Dai, and Y.-C. Jiao, "Design of novel dual-band bandpass filter with microstrip meander-loop resonator and csrr dgs," Progress In Electromagnetics Research, Vol. 78, 17-24, 2008.
doi:10.2528/PIER07090301 Google Scholar
32. Alici, K. B., A. E. Serebrayannikov, and E. Ozbay, "Radiation properties and coupling analysis of a metamaterial based, dual polarization, dual band, multiple split ring resonator antenna," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1183-1193, 2010.
doi:10.1163/156939310791586188 Google Scholar