PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 108 > pp. 81-99

EFFICIENT SOLUTIONS OF METAMATERIAL PROBLEMS USING A LOW-FREQUENCY MULTILEVEL FAST MULTIPOLE ALGORITHM

By O. Ergul and L. Gurel

Full Article PDF (1,946 KB)

Abstract:
We present fast and accurate solutions of electromagnetics problems involving realistic metamaterial structures using a lowfrequency multilevel fast multipole algorithm (LF-MLFMA). Accelerating iterative solutions using robust preconditioning techniques may not be sufficient to reduce the overall processing time when the ordinary high-frequency MLFMA is applied to metamaterial problems. The major bottleneck, i.e., the low-frequency breakdown, should be eliminated for efficient solutions. We show that the combination of an LF-MLFMA implementation based on the multipole expansion with the sparse-approximate-inverse preconditioner enables efficient and accurate analysis of realistic metamaterial structures. Using the robust LF-MLFMA implementation, we demonstrate how the transmission properties of metamaterial walls can be enhanced with randomlyoriented unit cells.

Citation:
O. Ergul and L. Gurel, "Efficient Solutions of Metamaterial Problems Using a Low-Frequency Multilevel Fast Multipole Algorithm," Progress In Electromagnetics Research, Vol. 108, 81-99, 2010.
doi:10.2528/PIER10071104
http://www.jpier.org/PIER/pier.php?paper=10071104

References:
1. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, Apr. 2001.
doi:10.1126/science.1058847

2. Eleftheriades, G. V. and K. G. Balmain, Negative-refraction Metamaterials: Fundamental Principles and Applications, Wiley-IEEE, New Jersey, 2005.
doi:10.1002/0471744751

3. Gokkavas, M., K. Güven, I. Bulu, K. Aydın, R. S. Penciu, M. Kafesaki, C. M. Soukoulis, and E. Özbay, "Experimental demonstration of a left-handed metamaterial operating at 100 GHz," Phys. Rev. B., Vol. 73, No. 19, 193103-1-193103-4, May 2006.
doi:10.1103/PhysRevB.73.193103

4. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, Nov. 2006.

5. Moss, C. D., T. M. Gregorczyk, Y. Zhang, and J. A. Kong, "Numerical studies of left handed metamaterials," Progress In Electromagnetics Research, Vol. 35, 315-334, 2002.
doi:10.2528/PIER02052409

6. Gürel, L., Ö. Ergül, A. Ünal, and T. Malas, "Fast and accurate analysis of large metamaterial structures using the multilevel fast multipole algorithm," Progress In Electromagnetics Research, Vol. 95, 179-198, 2009.
doi:10.2528/PIER09060106

7. Ylä-Oijala, P., Ö. Ergül, L. Gürel, and M. Taskinen, "Efficient surface integral equation methods for the analysis of complex metamaterial structures," Proc. European Conf. on Antennas and Propagation (EuCAP), 1560-1564, 2009.

8. Ergül, Ö., T. Malas, Ç. Yavuz, A. Ünal, and L. Gürel, "Computational analysis of complicated metamaterial structures using MLFMA and nested preconditioners," Proc. European Conf. on Antennas and Propagation (EuCAP), 2007.

9. Song, J., C.-C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1488-1493, Oct. 1997.
doi:10.1109/8.633855

10. Chew, W. C., J.-M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Boston, MA, 2001.

11. Ergül, Ö., Ç. Yavuz, A. Ünal, and L. Gürel, "Investigation of various metamaterial structures using multilevel fast multipole algorithm," Proc. IEEE Antennas and Propagation Soc. Int. Symp., 1845-1848, 2007.

12. Greengard, L., J. Huang, V. Rokhlin, and S. Wandzura, "Accelerating fast multipole methods for the Helmholtz equation at low frequencies," IEEE Comput. Sci. Eng., Vol. 5, 32-38, Jul.-Sep. 1998.

13. Jiang, L. J. and W. C. Chew, "Low-frequency fast inhomogeneous planewave algorithm (LF-FIPWA)," Microw. Opt. Technol. Lett., Vol. 40, No. 2, 117-122, Jan. 2004.
doi:10.1002/mop.11302

14. Darve, E. and P. Have, "A fast multipole method for Maxwell equations stable at all frequencies," Phil. Trans. R. Soc. Lond. A, Vol. 362, 603-628, Mar. 2004.

15. Wallén, H. and J. Sarvas, "Translation procedures for broadband MLFMA," Progress In Electromagnetics Research, Vol. 55, 47-78, 2005.
doi:10.2528/PIER05021001

16. Xuan, L., A. Zhu, R. J. Adams, and S. D. Gedney, "A broadband multilevel fast multipole algorithm," Proc. IEEE Antennas and Propagation Soc. Int. Symp., 1195-1198, 2004.

17. Chew, W. C., S. Koc, J. M. Song, C. C. Lu, and E. Michielssen, "A succinct way to diagonalize the translation matrix in three dimensions," Microw. Opt. Technol. Lett., Vol. 15, No. 3, 144-147, Jun. 1997.
doi:10.1002/(SICI)1098-2760(19970620)15:3<144::AID-MOP7>3.0.CO;2-G

18. Zhao, J.-S. and W. C. Chew, "Three dimensional multilevel fast multipole algorithm from static to electrodynamic," Microw. Opt. Technol. Lett., Vol. 26, No. 1, 43-48, Jul. 2000.
doi:10.1002/(SICI)1098-2760(20000705)26:1<43::AID-MOP14>3.0.CO;2-8

19. Zhao, J.-S. and W. C. Chew, "Applying matrix rotation to the three-dimensional low-frequency multilevel fast multipole algorithm," Microw. Opt. Technol. Lett., Vol. 26, No. 2, 105-110, Jul. 2000.
doi:10.1002/1098-2760(20000720)26:2<105::AID-MOP11>3.0.CO;2-W

20. Zhao, J.-S. and W. C. Chew, "Applying LF-MLFMA to solve complex PEC structures," Microw. Opt. Technol. Lett., Vol. 28, No. 3, 155-160, Feb. 2001.
doi:10.1002/1098-2760(20010205)28:3<155::AID-MOP3>3.0.CO;2-H

21. Chu, Y.-H. and W. C. Chew, "A multilevel fast multipole algorithm for electrically small composite structures," Microw. Opt. Technol. Lett., Vol. 43, No. 3, 202-207, Nov. 2004.
doi:10.1002/mop.20419

22. Jiang, L. J. and W. C. Chew, "A mixed-form fast multipole algorithm," IEEE Trans. Antennas Propag., Vol. 53, No. 12, 4145-4156, Dec. 2005.
doi:10.1109/TAP.2005.859915

23. Otani, Y. and N. Nishimura, "A periodic FMM for Maxwell's equations in 3D and its applications to problems related to photonic crystals," J. Comput. Phys., Vol. 227, No. 9, 4630-4652, Apr. 2008.
doi:10.1016/j.jcp.2008.01.029

24. Lee, J., J. Zhang, and C.-C. Lu, "Sparse inverse preconditioning of multilevel fast multipole algorithm for hybrid integral equations in electromagnetics," IEEE Trans. Antennas and Propagat., Vol. 52, No. 9, 2277-2287, Sep. 2004.
doi:10.1109/TAP.2004.834084

25. Malas, T. and L. Gürel, "Accelerating the multilevel fast multipole algorithm with the sparse-approximate-inverse (SAI) preconditioning," SIAM J. Sci. Comput., Vol. 31, No. 3, 1968-1984, Mar. 2009.
doi:10.1137/070711098

26. Koc, S., J. M. Song, and W. C. Chew, "Error analysis for the numerical evaluation of the diagonal forms of the scalar spherical addition theorem," SIAM J. Numer. Anal., Vol. 36, No. 3, 906-921, 1999.
doi:10.1137/S0036142997328111

27. Wu, B.-I., W.Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701

28. Wongkasem, N., A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, "Novel broadband terahertz negative refractive index metamaterials: Analysis and experiment," Progress In Electromagnetics Research, Vol. 64, 205-218, 2006.
doi:10.2528/PIER06071104

29. Grzegorczyk, T. M. and J. A. Kong, "Review of left-handed metamaterials: Evolution from theoretical and numerical studies to potential applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2053-2064, 2006.
doi:10.1163/156939306779322620

30. Yu, A., F. Yang, and A. Z. Elsherbeni, "A dual band circularly polarized ring antenna based on composite right and left handed metamaterials," Progress In Electromagnetics Research, Vol. 78, 73-81, 2008.
doi:10.2528/PIER07082902

31. Wu, G.-L., W. Mu, X.-W. Dai, and Y.-C. Jiao, "Design of novel dual-band bandpass filter with microstrip meander-loop resonator and csrr dgs," Progress In Electromagnetics Research, Vol. 78, 17-24, 2008.
doi:10.2528/PIER07090301

32. Alici, K. B., A. E. Serebrayannikov, and E. Ozbay, "Radiation properties and coupling analysis of a metamaterial based, dual polarization, dual band, multiple split ring resonator antenna," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1183-1193, 2010.
doi:10.1163/156939310791586188


© Copyright 2014 EMW Publishing. All Rights Reserved