PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 112 > pp. 273-298

TWO L-SHAPED ARRAY-BASED 2-D DOAS ESTIMATION IN THE PRESENCE OF MUTUAL COUPLING

By J. Liang and D. Liu

Full Article PDF (339 KB)

Abstract:
Recent research on the array geometrical configuration shows that the two L-shaped array (TLSA) has a lower Cramer-Rao Low-Bound (CRLB) of two-dimensional (2-D) directions-of-arrival (DOAs) estimation than other array configurations. However, in this array configuration, there are some problems to note: i) three electric angles are independently obtained from three uniformly linear subarrays on three axes, so they must be matched before solving elevation and azimuth angles from them; ii) Similar to other array geometries, the effect of mutual coupling in the TLSA on the estimation performance cannot be ignored; and iii) the conventional elevation estimators may encounter estimation failure. In this paper, we develop a new TLSA-based 2-D DOAs estimation algorithm. The key points of this paper are: i) using some particularly selecting matrices, a trilinear model is constructed to compensate the effect of mutual coupling on three subarrays. In addition, the steering vector is restored using the trilinear alternating least square method; ii) 2-D DOAs are estimated from the properly chosen elements of the restored steering vector to avoid pairing parameters and the severe performance degradation resulted from the failure in pairing; and iii) a new elevation estimator is designed to avoid estimation failure. Simulation results are presented to validate the performance of the proposed method.

Citation:
J. Liang and D. Liu, "Two L-Shaped Array-Based 2-D DOAs Estimation in the Presence of Mutual Coupling," Progress In Electromagnetics Research, Vol. 112, 273-298, 2011.
doi:10.2528/PIER10071701
http://www.jpier.org/PIER/pier.php?paper=10071701

References:
1. Pillai, S. U., Array Signal Processing, Springer-Verlag, New York, 1989.
doi:10.1007/978-1-4612-3632-0

2. Krim, H. and M. Viberg, "Two decades of array signal processing research: The parameter approach," IEEE Signal Process. Mag., Vol. 13, No. 4, 67-94, Jul.1996.
doi:10.1109/79.526899

3. Kedia, Y. S. and B. Chandna, "A new algorithm for 2-D DOA algorithm," Signal Processing, Vol. 60, No. 3, 325-332, Mar.1997.
doi:10.1016/S0165-1684(97)00082-0

4. Zoltowski, M. D., M. Haardt and C. P. Mathews, "Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT," IEEE Trans. Signal Processing, Vol. 44, No. 2, 316-328, Feb.1996.
doi:10.1109/78.485927

5. Ramos, J., C. P. Mathews and M. D. Zoltowski, "FCA-ESPRIT:A closed-form 2-D angle estimation algorithm for filled circular arrays with arbitrary sampling lattices," Signal Processing, Vol. 47, No. 1, 213-217, Jan.1997.

6. Harabi, F., A. Gharsallah and S. Marcos, "Three-dimensional antennas array for the estimation of direction of arrival," IET Microwaves, Antennas and Propagation, Vol. 3, No. 5, 843-849, 2009.
doi:10.1049/iet-map.2008.0234

7. Hua, Y., T. K. Sarkar and D. D. Weiner, "An L-shape array for estimation 2-D directions of wave arrival," IEEE Trans. Antennas and Propagation, Vol. 39, No. 2, 143-146, Feb.1991.
doi:10.1109/8.68174

8. Tayem, N., H. M. Kwon, and , "L-shape 2-dimensional arrival angle estimation with propagator method," IEEE Trans. Antennas and Propagation, Vol. 53, No. 5, 1622-1630, May 2005.
doi:10.1109/TAP.2005.846804

9. Marcos, S., A. Marsal and M. Benidir, "The propagator method for source bearing estimation," Signal Processing, Vol. 42, No. 2, 121-138, 1995.
doi:10.1016/0165-1684(94)00122-G

10. Munier, J. and G. Y. Delisle, "Spatial analysis using new properties of the cross-spectral matrix," IEEE Trans. Signal Processing, Vol. 39, No. 3, 746-749, Jul.1991.
doi:10.1109/78.80863

11. Roy, R. and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Trans. Acoustics, Speech, and Signal Processing, Vol. 37, No. 3, 746-749, Jul.1989.

12. Schmidt, R., "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas and Propagation., Vol. 34, No. 3, 276-280, Mar.1986.
doi:10.1109/TAP.1986.1143830

13. Kikuchi, S., H. Tsuji and A. Sano, "Pair-matching method for estimating 2-D angle of arrival with a cross-correlation matrix," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 35-40, 2006.
doi:10.1109/LAWP.2005.863610

14. Del Rio, J. E. F. and M. F. Catedra-Perez, "The matrix pencil method for two-dimensional direction of arrival estimation employing an L-shape array ," IEEE Trans. Antennas and Propagation, Vol. 45, No. 11, 1693-1694, Nov.1997.
doi:10.1109/8.650082

15. Shu, T., X. Liu and J. Lu, "Comments on `L-shape 2-dimensional arrival angle estimation with propagator method'," IEEE Trans. Antennas and Propagation, Vol. 56, No. 5, 1502-1503, May 2008.
doi:10.1109/TAP.2008.922891

16. Liu, T. H. and J. M. Mendel, "Azimuth and elevation direction finding using arbitrary array geometries," IEEE Trans. Signal Processing, Vol. 46, No. 7, 2061-2065, Jul.1998.

17. Van der Veen, A. J., P. Ober and E. F. Deprettere, "Azimuth and elevation computation in high resolution DOA estimation," IEEE Trans. Signal Processing, Vol. 40, No. 4, 1828-1832, Feb.1992.
doi:10.1109/78.143456

18. Van der Veen, A. J. and E. F. Deprettere, "Parallel VLSI matrix pencil algorithm for high resolution direction finding," IEEE Trans. Signal Processing, Vol. 39, No. 2, 383-394, Feb.1991.
doi:10.1109/78.80822

19. Krim, H. and M. Viberg, "Two decades of array signal processing research: The parameter approach," IEEE Signal Process. Mag., Vol. 13, No. 4, 67-69, Jul.1996.
doi:10.1109/79.526899

20. Zoltowski, M. D. and K. T. Wong, "ESPRIT-based 2-D direction finding with a sparse uniform array of electromagnetic vector array," IEEE Trans. Signal Processing, Vol. 48, No. 8, 2195-2304, Aug.2000.
doi:10.1109/78.852000

21. Zoltowski, M. D. and K. T. Wong, "Closed-form eigenstructure-based direction finding using arbitrary but identical subarrays on a sparse uniform cartesian array grid ," IEEE Trans. Signal Processing, Vol. 48, No. 8, 2205-2210, Aug.2000.
doi:10.1109/78.852001

22. Hua, Y., "A pencil-MUSIC algorithm for finding two-dimensional angles and polarizations using crossed dipoles," IEEE Trans. Antennas and Propagation, Vol. 41, No. 3, 370-376, Mar.1993.
doi:10.1109/8.233122

23. Li, J. and R. T. Compton, "Angle and polarization estimation using ESPRIT with a polarization sensitive array," IEEE Trans. Antennas and Propagation, No. 40, 550-555, May 1992.
doi:10.1109/8.142630

24. Veen, A., P. Ober and E. Deprettere, "Azimuth and elevation computation in high resolution DOA estimation," IEEE Trans. Acoust. Speech, Signal Processing,, Vol. 40, No. 7, 1828-1832, 1992.

25. Liang, J. and D. Liu, "Joint elevation and azimuth direction finding using L-shaped array," IEEE Trans. Antennas and Propagation, Vol. 58, No. 6, 2136-2141, Jun.2010.
doi:10.1109/TAP.2010.2046838

26. Swindlehurst, A. and T. Kailath, "Azimuth/elevation direction finding using regular array geometries," IEEE Trans. Aerosp.Electron. Syst., Vol. 29, No. 1, 145-156, Jan.1993.
doi:10.1109/7.249120

27. Wang, B., H. T. Hui and S. L. Mook, "Decoupled 2D direction of arrival estimation using compact uniform circular arrays in the presence of elevation-dependent mutual coupling," IEEE Trans.Antennas and Propagation,, Vol. 58, No. 3, 747-755, Mar.2010.
doi:10.1109/TAP.2009.2039323

28. Goossens, B. and H. Rogier, "A hybrid UCA-RARE/Root-MUSIC approach for 2-D direction of arrival estimation in uniform circular arrays in the presence of mutual coupling," IEEE Trans. Antennas and Propagation, Vol. 55, No. 3, 841-849, 2007.
doi:10.1109/TAP.2007.891848

29. Lin, M. and L. Yang, "Blind calibration and DOA estimation with uniform circular arrays in the presence of mutual coupling," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 1, 315-318, 2006.
doi:10.1109/LAWP.2006.878898

30. Ye, Z. and C. Liu, "2-D DOA estimation in the presence of mutual coupling," IEEE Trans. Antennas and Propagation, No. 56, 3150-3158, 2008.
doi:10.1109/TAP.2008.929446

31. Liu, C., Z. Ye and Y. Zhang, "Autocalibration algorithm for mutual coupling of planar array," Signal Processing, Vol. 90, No. 3, 784-794, Mar.2010.
doi:10.1016/j.sigpro.2009.08.014

32. Friedlander, B. and A. J. Weiss, "Direction finding in the presence of mutual coupling," IEEE Trans. Antennas and Propagation, Vol. 39, No. 3, 273-284, Mar.1991.
doi:10.1109/8.76322

33. Ng, B. C. and C. M. S. See, "Sensor-array calibration using a maximum-likelihood approach," IEEE Trans. Antennas and Propagation, Vol. 44, No. 6, 827-835, Jun.1996.
doi:10.1109/8.509886

34. Ye, Z. and C. Liu., "On the resiliency of MUSIC direction finding against antenna sensor coupling," IEEE Trans. Antennas and Propagation, Vol. 56, No. 2, 371-380, 2008.
doi:10.1109/TAP.2007.915461

35. Liu, C., Z. Ye and Y. Zhang, "DOA estimation based on fourth-order cumulants with unknown mutual coupling," Signal Processing, Vol. 89, No. 9, 1839-1843, 2009.
doi:10.1016/j.sigpro.2009.03.035

36. Svantesson, T., "Modeling and estimation of mutual coupling in a uniform linear array of dipoles," Proc. Int. Conf. Acoustics, Speech, Signal Processing, Vol. 5, 2961-2964, Mar.1999.

37. Saventesson, T., "Mutual coupling compensation using subspace fitting," Proc. IEEE Sensor Array and Multichannel Signal Process, Workshop, 494-498, 2000.

38. Harshman, R. A., "Foundation of the PARAFAC procedure:Model and conditions for an `explanatory' multi-mode factor analysis ," UCLA Working Papers in Phonetics, Vol. 16, 1-84, 1970.

39. Smilde, A., R. Bro and P. Geladi, Multi-way Analysis with Applications in the Chemical Sciences,, John Wiley & Sons Ltd., The Atrium, Southern Gate, Chichester, England, 2004.
doi:10.1002/0470012110

40. Sidiropoulos, N. D., G. B. Giannakis and R. Bro, "Parallel factor analysis in sensor array processing," IEEE Trans. on Signal Processing, Vol. 48, No. 8, 2377-2388, 2000.
doi:10.1109/78.852018

41. Sidiropoulos , N. D., G. B. Giannakis and R. Bro, "Blind PARAFAC Receiver for DS-CDMA systems," IEEE Trans. Signal Processing, Vol. 48, No. 3, 810-823, 2000.
doi:10.1109/78.824675

42. Sidiropoulos, N. D., COMFAC: Matlab code for LS fit-ting of the complex PARAFAC model in 3-D, 1998, http://www.telecom.tuc.gr/~nikos.

43. Kay, S. M., Fundamentals of Statistical Signal Processing:Estimation Theory, Prentice Hall, Upper Saddle River, NJ, 1993.


© Copyright 2014 EMW Publishing. All Rights Reserved