PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 108 > pp. 293-306

ENHANCEMENT OF BLUE LIGHT EMISSION USING SURFACE PLASMONS COUPLING WITH QUANTUM WELLS

By J. Zhao, K. Li, F. Kong, and D. Liu-Ge

Full Article PDF (782 KB)

Abstract:
3-dimension finite-difference time-domain (FDTD) method is used to simulate the enhanced blue light emission of gallium nitride light emitting diode (GaN-LED) using the surface-plasmons (SPs) coupling with the quantum wells. The numerical simulation results demonstrate that when the silver film is coated on GaN-LED, the excited SPs play a key role in the enhanced blue light emission, and the enhancement depends on the geometries of GaN-LED and silver film. An enhancement factor is given to describe the enhancement effect of light emission. By changing the structure parameters of GaN-LED and silver film, the enhanced peak of the light emission in the visible region can be controlled. Under the optimal parameters, about 17 times enhancement at 460 nm can be obtained, and the enhancement effect is evidently demonstrated by the SPs field distribution.

Citation:
J. Zhao, K. Li, F. Kong, and D. Liu-Ge, "Enhancement of Blue Light Emission Using Surface Plasmons Coupling with Quantum Wells," Progress In Electromagnetics Research, Vol. 108, 293-306, 2010.
doi:10.2528/PIER10072906
http://www.jpier.org/PIER/pier.php?paper=10072906

References:
1. Okamoto, K., I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mater., Vol. 3, No. 9, 601-605, 2004.
doi:10.1038/nmat1198

2. Chu, W.-H., Y.-J. Chuang, C.-P. Liu, P.-I. Lee, and S. L.-C. Hsu, "Enhanced spontaneous light emission by multiple surface plasmon coupling," Opt. Express, Vol. 18, No. 9, 9677-9683, 2010.
doi:10.1364/OE.18.009677

3. Song, J. H., T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, "Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons," Nano. Lett., Vol. 5, No. 8, 5, 2005.
doi:10.1021/nl050813r

4. Neogi, A., C. W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonovitch, "Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling," Physical Review B, Vol. 66, No. 15, 153305, 2002.
doi:10.1103/PhysRevB.66.153305

5. Gontijo, I., M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, "Coupling of InGaN quantum-well photoluminescence to silver surface plasmons," Physical Review B, Vol. 60, No. 16, 11564, 1999.
doi:10.1103/PhysRevB.60.11564

6. Hecker, N. E., R. A. Hopfel, and N. Sawaki, "Enhanced light emission from a single quantum well located near a metal coated surface," Physica E: Low-dimensional Systems and Nanostructures, Vol. 2, No. 1-4, 98-101, 1998.
doi:10.1016/S1386-9477(98)00022-8

7. Chang, C. Y. and Y. R.Wu, "Study of light emission enhancement in nanostructured InGaN/GaN quantum wells," IEEE Journal of Quantum Electronics, Vol. 46, No. 6, 884-889, 2010.
doi:10.1109/JQE.2010.2040515

8. Chen, H. S., D. M. Yeh, C. F. Lu, C. F. Huang, W. Y. Shiao, J. J. Huang, C. C. Yang, I. S. Liu, and W. F. Su, "White light generation with CdSe-ZnS nanocrystals coated on an InGaN-GaN quantum-well blue/green two-wavelength light-emitting diode," IEEE Photonics Technology Letters, Vol. 18, No. 13, 1430-1432, 2006.
doi:10.1109/LPT.2006.877551

9. Purcell, E. M., "Spontaneous emission probabilities at radio frequencies," Physical Review, Vol. 69, 681, 1946.

10. Goy, P., J. M. Raimond, M. Gross, and S. Haroche, "Observation of cavity-enhanced single-atom spontaneous emission," Physical Review Letters, Vol. 50, No. 24, 1903-1906, 1983.
doi:10.1103/PhysRevLett.50.1903

11. Blanco, L. A. and F. J. García de Abajo, "Spontaneous light emission in complex nanostructures," Physical Review B, Vol. 69, No. 20, 205414, 2004.
doi:10.1103/PhysRevB.69.205414

12. Ryu, H. Y. and J. I. Shim, "Structural parameter dependence of light extraction efficiency in photonic crystal InGaN vertical light-emitting diode structures," IEEE Journal of Quantum Electronics, Vol. 46, No. 5, 714-720, 2010.
doi:10.1109/JQE.2009.2035933

13. Long, D. H., I. K. Hwang, and S. W. Ryu, "Design optimization of photonic crystal structure for improved light extraction of GaN LED," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 15, No. 4, 1257-1263, 2009.
doi:10.1109/JSTQE.2009.2014471

14. Chen, J.-Y., J.-Y. Yeh, L.-W. Chen, Y.-G. Li, and C.-C. Wang, "Design and modeling for enhancement of light extraction in light-emitting diodes with archimedean lattice photonic crystals," Progress In Electromagnetics Research B, Vol. 11, 265-279, 2009.
doi:10.2528/PIERB08112704

15. Maka, T., D. N. Chigrin, S. G. Romanov, and C. M. S. Torres, "Three dimensional photonic crystals in the visible regime," Progress In Electromagnetics Research, Vol. 41, 307-335, 2003.

16. Lee, C. T., L. Z. Yu, and H. Y. Liu, "Optical performance improvement mechanism of multimode-emitted white resonant cavity organic light-emitting diodes," IEEE Photonics Technology Letters, Vol. 22, No. 5, 272-274, 2010.
doi:10.1109/LPT.2010.2050473

17. Klimov, V. V., "Spontaneous emission of an excited atom placed near a "left-handed" sphere," Optics Communications, Vol. 211, No. 1-6, 183-196, 2002.
doi:10.1016/S0030-4018(02)01802-3

18. Eschner, J., C. Raab, F. Schmidt-Kaler, and R. Blatt, "Light interference from single atoms and their mirror images," Nature, Vol. 413, No. 6855, 495-498, 2001.
doi:10.1038/35097017

19. Trieu, S., X. M. Jin, B. Zhang, T. Dai, K. Bao, X. N. Kang, and G. Y. Zhang, "Light extraction improvement of GaN-based light-emitting diodes using patterned undoped GaN bottom reflection gratings," Proceedings of the SPIE, Vol. 7216, 72162Q-72162Q-8, 2009.
doi:10.1117/12.805480

20. Buss, I. J., G. R. Nash, J. G. Rarity, and M. J. Cryan, "Finite-difference time-domain modeling of periodic and disordered surface gratings in AlInSb light emitting diodes with metallic back-reflectors," IEEE Journal of Lightwave Technology, No. 8, 1190-1200, 2010.
doi:10.1109/JLT.2010.2040803

21. Hecker, N. E., R. A. Hopfel, N. Sawaki, T. Maier, and G. Strasser, "Surface plasmon-enhanced photoluminescence from a single quantum well," Applied Physics Letters, Vol. 75, No. 11, 1577-1579, 1999.
doi:10.1063/1.124759

22. Gianordoli, S., R. Hainberger, A. Kock, N. Finger, E. Gornik, C. Hanke, and L. Korte, "Optimization of the emission characteristics of light emitting diodes by surface plasmons and surface waveguide modes," Applied Physics Letters, Vol. 77, No. 15, 2295-2297, 2000.
doi:10.1063/1.1317538

23. Vuckovic, J., M. Loncar, and A. Scherer, "Surface plasmon enhanced light-emitting diode," IEEE Journal of Quantum Electronics, Vol. 36, No. 10, 1131-1144, 2000.
doi:10.1109/3.880653

24. Kong, F., K. Li, B. I. Wu, H. Huang, H. Chen, and J. A. Kong, "Propagation properties of the spp modes in nanoscale narrow metallic gap, channel, and hole geometries," Progress In Electromagnetics Research, Vol. 76, 449-466, 2007.
doi:10.2528/PIER07070203

25. Kong, F., K. Li, H. Huang, B. I. Wu, and J. A. Kong, "Analysis of the surface magnetoplasmon modes in the semiconductor slit waveguide at terahertz frequencies," Progress In Electromagnetics Research, Vol. 82, 257-270, 2008.
doi:10.2528/PIER08031224

26. Yoon, J., S. H. Song, and J. H. Kim, "Extraction efficiency of highly confined surface plasmon-polaritons to far-field radiation: An upper limit," Opt. Express, Vol. 16, No. 2, 1269-1279, 2008.
doi:10.1364/OE.16.001269

27. Suyama, T. and Y. Okuno, "Enhancement of TM-TE mode conversion caused by excitation of surface plasmons on a metal grating and its application for refractive index measurement," Progress In Electromagnetics Research, Vol. 72, 91-103, 2007.
doi:10.2528/PIER07030301

28. Sambles, J. R., G. W. Bradbery, and F. Yang, "Optical excitation of surface plasmons: An introduction," Contemporary Physics, Vol. 32, No. 3, 173-18, 1991.
doi:10.1080/00107519108211048

29. Zayats, A. V., I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Physics Reports, Vol. 408, No. 3-4, 131-314, 2005.
doi:10.1016/j.physrep.2004.11.001

30. Entezar, R. S., A. Namdar, H. Rahimi, and H. Tajalli, "Localized waves at the surface of a single-negative periodic multilayer structure," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 2-3, 171-182, 2009.
doi:10.1163/156939309787604427

31. García-Vidal, F. J. and J. B. Pendry, "Collective theory for surface enhanced raman scattering," Physical Review Letters, Vol. 77, No. 6, 1163, 1996.
doi:10.1103/PhysRevLett.77.1163

32. Chuang, W. H., J. Y. Wang, C. C. Yang, and Y. W. Kiang, "Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter," Applied Physics Letters, Vol. 92, No. 13, 133115, 2008.
doi:10.1063/1.2906363

33. Chuang, W. H., J. Y. Wang, C. C. Yang, and Y. W. Kiang, "Transient behaviors of surface plasmon coupling with a light emitter," Applied Physics Letters, Vol. 93, No. 15, 153104, 2008.
doi:10.1063/1.2998617

34. Wang, J. Y., Y. W. Kiang, and C. C. Yang, "Emission enhancement behaviors in the coupling between surface plasmon polariton on a one-dimensional metallic grating and a light emitter," Applied Physics Letters, Vol. 91, No. 23, 233104, 2007.
doi:10.1063/1.2821829

35. Chau, Y. F., H. H. Yeh, and D. P. Tsai, "Surface plasmon resonances effects on different patterns of solid-silver and silver-shell nanocylindrical pairs," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8/9, 1005-1014, 2010.
doi:10.1163/156939310791586098

36. Zhang, X. F., L. F. Shen, J.-J. Wu, and T.-J. Yang, "Terahertz surface plasmon polaritons on a periodically structured metal film with high confinement and low loss," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2451-2460, 2009.

37. Suyama, T., Y. Okuno, and T. Matsuda, "Surface plasmon resonance absorption in a multilayered thin-film grating," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1773-1783, 2009.
doi:10.1163/156939309789566914

38. Politano, A., R. G. Agostino, E. Colavita, V. Formoso, and G. Chiarello, "Purely quadratic dispersion of surface plasmon in Ag/Ni(111): The influence of electron confinement," Physica Status Solidi (RRL) --- Rapid Research Letters, Vol. 2, No. 2, 86-88, 2008.
doi:10.1002/pssr.200701307

39. Politano, A., V. Formoso, E. Colavita, and G. Chiarello, "Probing collective electronic excitations in as-deposited and modified Ag thin films grown on Cu(111)," Physical Review B, Vol. 79, No. 4, 045426, 2009.
doi:10.1103/PhysRevB.79.045426

40. Yu, Y., Y. Jiang, Z. Tang, Q. Guo, J. Jia, Q. Xue, K. Wu, and E. Wang, "Thickness dependence of surface plasmon damping and dispersion in ultrathin Ag films," Physical Review B, Vol. 72, No. 20, 205405, 2005.
doi:10.1103/PhysRevB.72.205405

41. Politano, A., V. Formoso, and G. Chiarello, "Damping of the surface plasmon in clean and K-modified Ag thin films," Journal of Electron Spectroscopy and Related Phenomena, Vol. 173, No. 1, 12-17, 2009.
doi:10.1016/j.elspec.2009.03.003

42. Kane, Y., "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

43. Chen, C. Y., Q. Wu, X. J. Bi, Y. M. Wu, and L. W. Li, "Characteristic analysis for FDTD based on frequency response," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2-3, 283-292, 2010.
doi:10.1163/156939310790735796

44. Yang, H., "Exponential FDTD for plasma dispersive medium," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 8-9, 1165-1172, 2008.
doi:10.1163/156939308784158913

45. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Physical Review B, Vol. 6, No. 12, 4370, 1972.
doi:10.1103/PhysRevB.6.4370


© Copyright 2014 EMW Publishing. All Rights Reserved