PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 108 > pp. 235-247

FAST INHOMOGENEOUS PLANE WAVE ALGORITHM FOR ANALYSIS OF COMPOSITE BODIES OF REVOLUTION

By X. Rui, J. Hu, and Q. H. Liu

Full Article PDF (298 KB)

Abstract:
A fast inhomogeneous plane wave algorithm is developed for the electromagnetic scattering problem from the composite bodies of revolution (BOR). Poggio-Miller-Chang Harrington-Wu (PMCHW) approach is used for the homogeneous dielectric objects, while the electric field integral equation (EFIE) is used for the perfect electric conducting objects. The aggregation and disaggregation factors can be expressed analytically by using the Weyl identity. Compared with the traditional method of moments (MoM), both the memory requirement and CPU time, are reduced for large-scale composite BOR problems. Numerical results are given to demonstrate the validity and the efficiency of the proposed method.

Citation:
X. Rui, J. Hu, and Q. H. Liu, "Fast Inhomogeneous Plane Wave Algorithm for Analysis of Composite Bodies of Revolution," Progress In Electromagnetics Research, Vol. 108, 235-247, 2010.
doi:10.2528/PIER10081607
http://www.jpier.org/PIER/pier.php?paper=10081607

References:
1. Andreasen, M. G., "Scattering from bodies of revolution," IEEE Trans. Antennas Propag., Vol. 13, No. 2, 303-310, Mar. 1965.
doi:10.1109/TAP.1965.1138406

2. Mautz, J. R. and R. F. Harrington, "Radiation and scattering from bodies of revolution," Appl. Sci. Res., Vol. 20, No. 1, 405-435, Jun. 1969.
doi:10.1007/BF00382412

3. Medgyesi-Mitschg, L. N. and J. M. Putnam, "Electromagnetic scattering from axially inhomogeneous bodies of revolution," IEEE Trans. Antennas Propag., Vol. 32, No. 8, 797-806, Aug. 1984.
doi:10.1109/TAP.1984.1143430

4. Huddleston, P. L., L. N. Medgyesi-Mitschg, and J. M. Putnam, "Combined field integral equation formulation for scattering by dielectrically coated conducting bodies," IEEE Trans. Antennas Propag., Vol. 34, No. 4, 510-520, Apr. 1986.
doi:10.1109/TAP.1986.1143846

5. Kishk, A. A. and L. Shafai, "Different formulations for numerical solution of single or multibodies of revolution with mixed boundary conditions," IEEE Trans. Antennas Progagat., Vol. 34, No. 5, 666-673, 1986.
doi:10.1109/TAP.1986.1143875

6. Kishk, A. A., G. E. Bridges, A. Sebak, and L. Shafai, "Integral equation solution of scattering from partially coated conduction bodies of revolution," IEEE Trans. Magnet., Vol. 27, 4283-4286, May 1991.
doi:10.1109/20.105048

7. Wong, M. F., M. Park, and V. Frouad Hanna, "Axisymmetric edge-based finite element formulation for bodies of revolution: Application to dielectric resonators," IEEE Microwave Symp. MTT-S, Vol. 1, 285-288, Orlando, FL, 1995.

8. Greenwood, A. D. and J. M. Jin, "A novel efficient algorithm for scattering from a complex BOR using mixed finite elements and cylindrical PML," IEEE Trans. Antennas Propag., Vol. 47, No. 4, 620-629, 1999.
doi:10.1109/8.768800

9. Rui, X., J. Hu, and Q. H. Liu, "Higher order finite element method for inhomogeneous axisymmetric resonators," Progress In Electromagnetics Research B, Vol. 21, 189-201, 2010.

10. Sukharevsky, O. I. and V. A. Vasilets, "Scattering of reflector antenna with conic dielectric radome," Progress In Electromagnetics Research B, Vol. 4, 159-169, 2008.
doi:10.2528/PIERB08011404

11. Hady, L. K. and A. A. Kishk, "Electromagnetic scattering from conducting circular cylinder coated by meta-materials and loaded with helical strips under oblique incidence," Progress In Electromagnetics Research B, Vol. 3, 189-206, 2008.
doi:10.2528/PIERB07121107

12. Zainud-Deen, S. H., A. Z. Botros, and M. S. Ibrahim, "Scattering from bodies coated with metamaterial using FDTD method," Progress In Electromagnetics Research B, Vol. 2, 279-290, 2008.
doi:10.2528/PIERB07112803

13. Gedney, S. D. and R. Mittra, "The use of the FFT for the efficient solution of the problem of electromagnetic scattering by a body of revolution," IEEE Trans. Antennas Propag., Vol. 38, No. 3, 313-322, Mar. 1990.
doi:10.1109/8.52253

14. Abdelmageed, A. K., "Efficient evaluation of modal Green's functions arising in EM scattering by bodies of revolution," Progress In Electromagnetics Research, Vol. 27, 337-356, 2000.
doi:10.2528/PIER99061601

15. Mohsen, A. A. K. and A. K. Abdelmageed, "A fast algorithm for treating EM scattering by bodies of revolution," Int. J. Elect. Commun., Vol. 55, No. 3, 164-170, 2001.
doi:10.1078/1434-8411-00025

16. Yu, W. M., D. G. Fang, and T. J. Cui, "Closed form modal Green's functions for accelerated computation of bodies of revolution," IEEE Trans. Antennas Propag., Vol. 56, No. 11, 3452-3461, Nov. 2008.

17. Rui, X., J. Hu, and Q. H. Liu, "Fast inhomogeneous plane wave algorithm for scattering from PEC body of revolution," Microwave Opt. Technol. Lett., Vol. 52, No. 8, 1915-1922, 2010.
doi:10.1002/mop.25319

18. Rui, X., J. Hu, and Q. H. Liu, "Fast inhomogeneous plane wave algorithm for homogeneous dielectric body of revolution," Commun. Comput. Phys., Vol. 8, No. 4, 917-932, 2010.

19. Poggio, A. J. and E. K. Miller, "Integral equation solutions of three-dimensional scattering problems," Computer Techniques for Electromagnetics, 159-264, Pergamon Press, Oxford and New York, 1973.

20. Harrington, R. F., "Boundary integral formulations for homogeneous material bodies," Journal of Electromagnetic Waves and Applications, Vol. 3, No. 1, 1-15, 1989.
doi:10.1163/156939389X00016

21. Wu, T. K. and L. L. Tsai, "Scattering from arbitrarily-shaped lossy dielectric bodies of revolution," Radio Sci., Vol. 12, No. 5, 709-718, 1997.
doi:10.1029/RS012i005p00709

22. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering from a perfect electromagnetic conductor cylinder buried in a dielectric half-space," Progress In Electromagnetics Research, Vol. 78, 25-38, 2008.
doi:10.2528/PIER07081601

23. Yuan, J., Y. Qiu, J. L. Guo, Y. Zou, and Q.-Z. Liu, "Fast analysis of antenna characteristics on electrically large composite objects," Progress In Electromagnetics Research, Vol. 80, 29-44, 2008.
doi:10.2528/PIER07111205

24. Hua, Y., Q. Z. Liu, Y. L. Zou, and L. Sun, "A hybrid FE-BI method for electromagnetic scattering from dielectric bodies partially covered by conductors," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2-3, 423-430, 2008.
doi:10.1163/156939308784160802

25. Yang, M. L. and X. Q. Sheng, "Parallel high-order FE-BI MLFMA for scattering by large and deep coated cavities loaded with obstacles," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1813-1823, 2009.
doi:10.1163/156939309789566932

26. Qu, S. W., C. H. Chan, and Q. Xue, "Ultrawideband composite cavity-backed rounded triangular bowtie antenna with stable patterns," Journal of Electromagnetic Waves and Applications, Vol. 23, 685-695, 2009.
doi:10.1163/156939309788019930

27. Chew, W. C., Waves and Fields in Inhomogeneous Media, New York, 1990.

28. Hu, B., W. C. Chew, E. Michielssen, and J. Zhao, "Fast inhomogeneous plane wave algorithm for the fast analysis of two-dimensional scattering problem," Radio Sci., Vol. 34, No. 4, 759-772, Jul./Aug. 1999.
doi:10.1029/1999RS900038

29. Hu, B., W. C. Chew, and S. Velamparambil, "Fast inhomogeneous plane wave algorithm for the analysis of electromagnetic scattering," Radio Sci., Vol. 36, No. 6, 1327-1340, Nov./Dec. 2001.
doi:10.1029/2000RS002329

30. Jackson, J. D., Classical Electrodynamics, 2 Ed., New York, 1975.

31. Kong, J. A., Electromagnetic Wave Theory, EMW, Cambridge, MA, 2000.

32. Wavenology EM User's Manual, Wave Computation Technologies, Inc., 2009.

33. Xiao, T. and Q. H. Liu, "Enlarged cells for the conformal FDTD method to avoid the time step reduction," IEEE Microwave Wireless Compon. Lett., Vol. 14, No. 12, 551-553, 2004.
doi:10.1109/LMWC.2004.837384

34. Xiao, T. and Q. H. Liu, "A 3-D enlarged cell technique (ECT) for the conformal FDTD method," IEEE Trans. Antennas Propagat., Vol. 56, No. 3, 765-773, Mar. 2008.
doi:10.1109/TAP.2008.916876


© Copyright 2014 EMW Publishing. All Rights Reserved