PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 114 > pp. 17-32

EXTENDED WAVENUMBER DOMAIN ALGORITHM FOR HIGHLY SQUINTED SLIDING SPOTLIGHT SAR DATA PROCESSING

By D. Guo, H. Xu, and J. Li

Full Article PDF (466 KB)

Abstract:
Image formation from squinted sliding spotlight synthetic aperture radar (SAR) is limited by azimuth spectral folding and severe two dimension coupling. This paper presents an Extended Wavenumber Domain Algorithm (WDA) for highly squinted sliding spotlight SAR data processing. This algorithm adopts azimuth deramping approach to overcome the azimuth spectral folding phenomenon. The chirp rate for azimuth deramping and the principle of choosing pulse repetition frequency (PRF) is presented to accommodate the characteristic of Doppler history. Subsequently, the full focusing is implemented by WDA. Instead of the conventional Stolt mapping in WDA, a modified Stolt mapping is introduced in order to enlarge the range extension of focused image and enable to update the Doppler parameters along range. To confirm the correctness of the implementation of modified Stolt mapping and the azimuth position of target in focused image, related compensation terms are developed. Point target simulation results are presented to validate the effectiveness of extended WDA to process highly squinted sliding spotlight SAR data.

Citation:
D. Guo, H. Xu, and J. Li, "Extended Wavenumber Domain Algorithm for Highly Squinted Sliding Spotlight SAR Data Processing," Progress In Electromagnetics Research, Vol. 114, 17-32, 2011.
doi:10.2528/PIER11012010
http://www.jpier.org/PIER/pier.php?paper=11012010

References:
1. Cumming, I. G. and F. H. Wong, Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, Artech House, Norwood, MA, 2005.

2. Chan, Y. K. and V. C. Koo, "An introduction to Synthetic Aperture Radar (SAR) ," Progress In Electromagnetics Research B, Vol. 2, 27-60, 2008.
doi:10.2528/PIERB07110101

3. Mao, X., D. Y. Zhu, and Z. D. Zhu, "Signatures of moving target in polar format spotlight SAR image," Progress In Electromagnetics Research, Vol. 92, 47-64, 2009.
doi:10.2528/PIER09030908

4. Zhao, Y. W., M. Zhang, and H. Chen, "An efficient ocean SAR raw signal simulation by employing fast Fourier transform," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2273-2284, 2010.
doi:10.1163/156939310793699064

5. Park, J.-I. and K.-T. Kim, "A comparative study on isar imaging algorithms for radar target identification," Progress In Electromagnetics Research, Vol. 108, 155-175, 2010.
doi:10.2528/PIER10071901

6. Belcher, D. P. and C. J. Baker, "High resolution processing of hybrid strip-map/spotlight mode SAR," IEE Proc. - Radar Sonar Navig., Vol. 143, No. 6, 366-374, 1984.
doi:10.1049/ip-rsn:19960790

7. Jin, M. and C. Wu, "A SAR correlation algorithm which accommodates large range migration," IEEE Trans. Geosci. Remote Sens., Vol. 22, No. 6, 592-597, 1984.

8. Raney, R. K., H. Runge, R. Bamler, I. G. Cumming, and F. H.Wong, "Precision SAR processing using chirp scaling," IEEE Trans. Geosci. Remote Sens., Vol. 32, No. 4, 786-799, 1994.
doi:10.1109/36.298008

9. Cafforio, C., C. Prati, and F. Rocca, "SAR data focusing using seismic migration techniques," IEEE Trans. Aerosp. Electron. Syst., Vol. 27, No. 2, 194-207, 1991.
doi:10.1109/7.78293

10. Lanari, R., "A new method for the compensation of the SAR range cell migration based on the chirp-z transform," IEEE Trans. Geosci. Remote Sens., Vol. 33, No. 5, 1296-1299, 1995.
doi:10.1109/36.469496

11. Sun, J., S. Mao, G. Wang, and W. Hong, "Polar format algorithm for spotlight bistatic SAR with arbitrary geometry configuration," Progress In Electromagnetics Research, Vol. 103, 323-338, 2010.
doi:10.2528/PIER10030703

12. Mittermayer, J., R. Lord, and E. Borner, "Sliding spotlight SAR processing for TerraSAR-X using a new formulation of the extended chirp scaling algorithm," Proc. of IGARSS, 1462-1464, 2003.

13. Prats, P., R. Scheiber, J. Mittermayer, A. Meta, and A. Moreira, "Processing of sliding spotlight and TOPS SAR data using baseband azimuth scaling," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 2, 770-780, 2010.
doi:10.1109/TGRS.2009.2027701

14. Jia, X., Y. Deng, W. Xu, and L. Feng, "Processing of sliding spotlight SAR data using the azimuth frequency deramping," Proc. of EUSAR, Vol. 627, No. 630, 2010.

15. Lanari, R., S. Zoffoli, E. Sansosti, G. Fornaro, and F. Serafino, "New approach for hybrid strip-map/spotlight SAR data focusing," IEE Proc. - Radar, Sonar Navig., Vol. 148, No. 6, 363-372, 2001.
doi:10.1049/ip-rsn:20010662

16. Nie, X., D. Y. Zhu, and Z. D. Zhu, "Application of synthetic bandwidth approach in SAR polar format algorithm using the deramp technique," Progress In Electromagnetics Research, Vol. 80, 447-460, 2008.
doi:10.2528/PIER07121409

17. Moreira, A. and Y. Huang, "Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation," IEEE Trans. Geosci. Remote Sens., Vol. 32, No. 5, 1029-1040, 1994.
doi:10.1109/36.312891

18. Davidson, G. W., I. G. Cumming, and M. R. Ito, "A chirp scaling approach for processing squint mode SAR data," IEEE Trans. Aerosp. Electron. Syst., Vol. 32, No. 1, 121-133, 1996.
doi:10.1109/7.481254

19. Wong, F. H. and T. S. Yeo, "New applications of the nonlinear chirp scaling in SAR data processing," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 5, 946-953, 2001.
doi:10.1109/36.921412

20. Yeo, T. S., N. L. Tan, C. Zhang, and Y. Lu, "A new subaperture approach to high squint SAR processing," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 5, 954-968, 2001.
doi:10.1109/36.921413

21. Reigber, A., E. Alivizatos, A. Potsis, and A. Moreira, "Extended wavenumber domain synthetic aperture radar focusing with integrated motion compensation," IEE Proc. - Radar Sonar Navig., Vol. 153, No. 3, 301-310, 2006.
doi:10.1049/ip-rsn:20045087

22. Chan, Y. K., V. C. Koo, B.-K. Chung, and H.-T. Chuah, "Modified algorithm for real time SAR signal processing," Progress In Electromagnetics Research C, Vol. 1, 159-168, 2008.
doi:10.2528/PIERC08021801

23. Lim, S.-H., J.-H. Han, S.-Y. Kim, and N.-H. Myung, "Azimuth beam pattern synthesis for airborne SAR system optimization," Progress In Electromagnetics Research, Vol. 106, 295-309, 2010.
doi:10.2528/PIER10061901

24. Ma, L., Z.-F. Li, and G. S. Liao, "System error analysis and calibration methods for multi-channel SAR," Progress In Electromagnetics Research, Vol. 112, 309-327, 2011.


© Copyright 2014 EMW Publishing. All Rights Reserved