Vol. 114
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-02-23
Planar Multiband Bandpass Filter with Multimode Stepped-Impedance Resonators
By
Progress In Electromagnetics Research, Vol. 114, 129-144, 2011
Abstract
Planar multiband bandpass filters are implemented based on the versatile multimode stepped-impedance resonators (SIRs). The resonant spectrum of a SIR can be calculated as functions of the length ratios for various impedance ratios of the high- and low-impedance sections. Thus, by properly selecting the geometric parameters and designing the input/output coupling structure, the SIRs are feasible to realize multiband multimode filters. Using a single SIR, a dual-mode dual-band, a dual-mode triple-band or a hybrid dual-/triple-mode dual-band bandpass filter can be realized. Emphasis is also placed on designing specified ratios of center frequencies and fractional bandwidths of the passbands. To extend the design flexibility, extra shunt open stubs are used to adjust the ratio of the passband frequencies. In addition, sharpness of the transition bands is improved by designing the input/output stages. Simulation results are validated by the measured responses of experimental circuits.
Citation
Yi-Chyun Chiou, and Jen-Tsai Kuo, "Planar Multiband Bandpass Filter with Multimode Stepped-Impedance Resonators," Progress In Electromagnetics Research, Vol. 114, 129-144, 2011.
doi:10.2528/PIER11012011
References

1. Behera, S. and K. J. Vinoy, "Microstrip square ring antenna for dualband operation," Progress In Electromagnetics Research, Vol. 93, 41-56, 2009.
doi:10.2528/PIER09021909

2. Alkanhal, M. A. S., "Composite compact triple-band microstrip antennas," Progress In Electromagnetics Research, Vol. 93, 221-236, 2009.
doi:10.2528/PIER09050407

3. Mokhtaari, M., J. Bornemann, K. Rambabu, and S. Amari, "Coupling-matrix design of dual and triple passband filters," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 11, 3940-3946, Nov. 2006.
doi:10.1109/TMTT.2006.884687

4. Lee, J. and K. Sarabandi, "Design of triple-passband microwave filters using frequency transformation," IEEE Trans. Microw. Theory Tech.,, Vol. 55, No. 1, 187-193, Jan. 2008.
doi:10.1109/TMTT.2007.912206

5. Kuo, J.-T., T.-H. Yeh, and C.-C. Yeh, "Design of microstrip bandpass filter with a dual-passband response,", Vol. 53, No. 4, 1331-1337, Apr. 2005.
doi:10.1109/TMTT.2005.845765

6. Chen, C.-F., T.-Y. Huang and R.-B. Wu, "Design of dual-and triple-passband filters using alternatively cascade multiband resonators," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 9, 3350-3358, Sep. 2006.
doi:10.1109/TMTT.2006.880653

7. Chen, X. P., K. Wu, and Z.-L. Li, "Dual-band and triple-band substrate integrated waveguide filters with Chebyshev and quasielliptic responses," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 11, 2569-2578, Dec. 2007.
doi:10.1109/TMTT.2007.909603

8. Yang, R.-Y., H. Kuan, C.-Y. Hung, and C.-S. Ye, "Design of dual-band bandpass filters using a dual feeding structure and embedded uniform impedance resonators," Progress In Electromagnetics Researc, Vol. 105, 93-102, 2010.

9. Velazquez-Ahumada, M. D. C., J. Martel-Villagr, F. Medina, and F. Mesa, "Application of stub loaded folded stepped impedance resonators to dual band filter design," Progress In Electromagnetics Research, Vol. 102, 107-124, 2010.
doi:10.2528/PIER10011406

10. Mo, S.-G., Z.-Y. Yu, and L. Zhang, "Design of triple-mode bandpass filter using improved hexagonal loop resonator," Progress In Electromagnetics Research, Vol. 96, 117-125, 2009.
doi:10.2528/PIER09080304

11. Zhang, L., Z.-Y. Yu, and S.-G. Mo, "Novel planar multimode bandpass filters with radial-line stubs," Progress In Electromagnetics Research, Vol. 101, 33-42, 2010.
doi:10.2528/PIER09121303

12. Menzel, W., L. Zhu, K. Wu, and F. Bogelsack, "On the design of novel compact broad-band planar filters," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 2, 364-370, Feb. 2003.
doi:10.1109/TMTT.2002.807843

13. Chiou, Y.-C., J.-T. Kuo, and E. Cheng, "Broadband quasi-Chebyshev bandpass filters with multimode stepped-impedance resonators (SIRs)," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 8, 3352-3358, Aug. 2006.
doi:10.1109/TMTT.2006.879131

14. Kuo, J.-T., Y.-C. Chiou, and E. Cheng, "High selectivity ultra-wideband (UWB) multimode stepped-impedance resonators (SIRs) bandpass filter with two-layer broadside-coupled structure," Asia-Pacific Microwave Conference, 2361-2364, Bangkok, Thailand, Dec. 2007.

15. Wong, S. W. and L. Zhu, "Implementation of compact UWB bandpass filter with a notch-band," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 1, 10-12, Jan. 2008.
doi:10.1109/LMWC.2007.911972

16. Chiou, Y.-C., Y.-F. Lee, C.-C. Chen, and J.-T. Kuo, "Planar multimode resonator bandpass filters with sharp transition and wide stopband," EEE MTT-S Int. Microw. Symp. Dig., Atlanta, GA, USA, Jun. 2008.

17. Huang, T.-H., H.-J. Chen, C.-C. Chang, L.-S. Chen, Y.-H. Wang, and M.-P. Houng, "A novel compact ring dual-mode filter with adjustable second pass-band for dual-band applications," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 6, 360-362, Jun. 2006.
doi:10.1109/LMWC.2006.875607

18. Zhang, X. Y. and Q. Xue, "Novel dual-mode dual-band filters using coplanar-waveguide-fed ring resonators," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 10, 2183-2190, Oct. 2007.
doi:10.1109/TMTT.2007.906501

19. Lugo, C. and J. Papapolymerou, "Multilayer dual-band filter using a reflector cavity and dual-mode resonators," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 9, 637-639, Sep. 2007.
doi:10.1109/LMWC.2007.903435

20. Liu, Y., W.-B. Dou, and Y.-J. Zhao, "A tri-band bandpass filter realized using tri-mode T-shape branches," Progress In Electromagnetics Research, Vol. 105, 425-444, 2010.
doi:10.2528/PIER10010902

21. Matthaei, G. L., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Network, and Coupling Structures, Sec. 11:02 ~ 11:03, Artech House, Norwood, MA, 1980.

22. , , , Zeland Software Inc., IE3D Simulator, Jan. 1997.

23. Kuo, J.-T., S.-P. Chen, and M. Jiang, "Parallel-coupled microstrip filters with over-coupled end stages for suppression of spurious responses," IEEE Microw. Wireless Comp. Lett., Vol. 13, No. 10, 440-442, Oct. 2003.
doi:10.1049/iet-map:20060130

24. Kuo, J.-T. and M.-H. Wu, "Corrugated parallel-coupled line bandpass filters with multispurious suppression," IET - Microw. Antennas Propag., Vol. 1, No. 3, 718-722, Jun. 2007.

25. Velazquez-Ahumada, M. D. C., J. Martel, and F. Medina, "Parallel coupled microstrip filters with ground-plane aperture for ,", Vol. 52, 1082-1086, Mar. 2004.

26. Kuo, J.-T. and E. Shih, "Wideband bandpass filter design with three-line microstrip structures," Proc. Inst. Elect. Eng., Part H, Vol. 149, No. 5, 243-247, Oct. 2002.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied.