Vol. 115

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-04-08

Dual-Band Terahertz Metamaterial Absorber with Polarization Insensitivity and Wide Incident Angle

By Xun-Jun He, Yue Wang, Jianmin Wang, Tailong Gui, and Qun Wu
Progress In Electromagnetics Research, Vol. 115, 381-397, 2011
doi:10.2528/PIER11022307

Abstract

This paper presents the design, simulation and measurement of a dual-band terahertz metamaterial absorber with polarization-insensitivity and wide incident angle. The unit cell of the metamaterial consists of top resonator structures and low metallic ground plane, separated by an isolation material spacer to realize both electric and magnetic resonances. The physical mechanism of dual-band absorption and the sensitivity to the polarization direction and incident direction of the EM wave are theoretically investigated by simulating the x-component and normal component electric field distribution, current distribution on ERRs and metallic ground plane, and distribution of power flow and loss at the resonance frequencies as well as different modes EM waves, based the FDTD calculated method, respectively. The results show that the absorber is not only correctly coupling to the incident electric field and magnetic field, but also can trap the input power into specific positions of the devices and absorb it, besides insensitive to the polarized angle and incident angle. Moreover, the experiment demonstrates that the absorber achieves two strong absorptions of 82.8% and 86.8% near 1.724 and 3.557THz.

Citation


Xun-Jun He, Yue Wang, Jianmin Wang, Tailong Gui, and Qun Wu, "Dual-Band Terahertz Metamaterial Absorber with Polarization Insensitivity and Wide Incident Angle," Progress In Electromagnetics Research, Vol. 115, 381-397, 2011.
doi:10.2528/PIER11022307
http://www.jpier.org/PIER/pier.php?paper=11022307

References


    1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509-514, 1968.
    doi:10.1070/PU1968v010n04ABEH003699

    2. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
    doi:10.1103/PhysRevLett.84.4184

    3. Zhou, H., Z. Pei, S. Qu, S. Zhang, J. Wang, Q. Li, and Z. Xu, "A planar zero-index metamaterial for directive emission," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 953-962, 2009.
    doi:10.1163/156939309788355289

    4. Feise, M. W., P. J. Bevelacqua, and J. B. Schneider, "Effects of surface waves on behavior of perfect lenses," Phys. Rev. B, Vol. 66, 035113, 2002.
    doi:10.1103/PhysRevB.66.035113

    5. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
    doi:10.1103/PhysRevLett.85.3966

    6. Alici, K. B. and E. Ozbay, "Electrically small split ring resonator antennas," J. Appl. Phys., Vol. 101, 083104, 2007.
    doi:10.1063/1.2722232

    7. Hwang, R. B., H. W. Liu, and C. Y. Chin, "A metamaterial-based E-plane horn antenna," Progress In Electromagnetics Research, Vol. 93, 275-289, 2009.
    doi:10.2528/PIER09050606

    8. Tang, Y., B. A. Jeremy, D. H. Werner, and T. S. Mayer, "Single-layer metallodielectric nanostructures as dual-band midinfrared filters," Appl. Phys. Lett., Vol. 92, 263106-263108, 2008.
    doi:10.1063/1.2944137

    9. Bonache, J., I. Gil, J. Garcia-Garcia, and F. Martin, "Novel microstrip bandpass filters based on complementary split-ring resonators," IEEE Trans. Microw. Theory Tech., Vol. 54, 265, 2006.
    doi:10.1109/TMTT.2005.861664

    10. Sabah, C. and S. Uckun, "Multilayer system of lorentz/drude type metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
    doi:10.2528/PIER09031306

    11. Siso, G., M. Gil, J. Bonache, and F. Martin, "Application of metamaterial transmission lines to design of quadrature phase shifters," Electron. Lett., Vol. 43, No. 20, 1098-1100, 2007.
    doi:10.1049/el:20071755

    12. Khalilpour, J. and M. Hakkak, "S-shaped ring resonator as anisotropic uniaxial metamaterial used in waveguide tunneling," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1763-1772, 2009.
    doi:10.1163/156939309789566879

    13. Wakatsuchi, H., S. Greedy, C. Christopoulos, and J. Paul, "Customised broadband metamaterial absorbers for arbitrary polarization," Opt. Express, Vol. 18, 22187-22198, 2010.
    doi:10.1364/OE.18.022187

    14. Wang, B.-N., T. Koschny, and C. M. Soukoulis, "Wide-angle and polarization-independent chiral metamaterial absorber," Phys. Rev. B, Vol. 80, 33108-33111, 2009.
    doi:10.1103/PhysRevB.80.033108

    15. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
    doi:10.2528/PIER10011110

    16. Wang, J., S. Qu, Z. Fu, H. Ma, Y. Yang, X. Wu, Z. Xu, and M. Hao, "Three-dimensional metamaterial microwave absorbers composed of coplanar magnetic and electric resonators," Progress In Electromagnetics Research Letters, Vol. 7, 15-24, 2009.
    doi:10.2528/PIERL09012003

    17. Zhu, B., C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Dual band switchable metamaterial electromagnetic absorber," Progress In Electromagnetics Research B, Vol. 24, 121-129, 2010.
    doi:10.2528/PIERB10070802

    18. Tao, H., N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express, Vol. 16, 7181-7188, 2008.
    doi:10.1364/OE.16.007181

    19. Tao, H., C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization," Phys. Rev. B, Vol. 78, 241103(R), 2008.
    doi:10.1103/PhysRevB.78.134403

    20. Landy, N. I., C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, "Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging," Phys. Rev. B, Vol. 79, 125104-125109, 2009.
    doi:10.1103/PhysRevB.79.125104

    21. Gu, C., S. Qu, Z. Pei, H. Zhou, J. Wang, B.-Q. Lin, Z. Xu, P. Bai, and W.-D. Peng, "A wide-band polarization-insensitive and wide-angle terahertz metamaterial absorber," Progress In Electromagnetics Research Letters, Vol. 17, 171-179, 2010.
    doi:10.2528/PIERL10070105

    22. Zhou, Q. L., C. L. Zhang, K. J. Mu, B. Jin, L. L. Zhang, W. W. Li, and R. S. Feng, "Optical property and spectroscopy studies on the explosive 2,4,6-trinitro-1,3,5-trihydroxybenzene in the terahertz range," Appl. Phys. Lett., Vol. 92, 101106-101108, 2008.
    doi:10.1063/1.2895638

    23. Zhang, L. L., H. Zhong, C. Deng, C. L. Zhang, and Y. J. Zhao, "Terahertz wave reference-free phase imaging for identification of explosives," Appl. Phys. Lett., Vol. 92, 091117-091119, 2008.
    doi:10.1063/1.2891082

    24. Wen, Q. Y., H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, "Dual band teraherz metamaterial absorber: Design, fabrication, and characterization," Appl. Phys. Lett., Vol. 95, 241111-3, 2009.
    doi:10.1063/1.3276072

    25. Tao, H., C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, "A dual band terahertz metamaterial absorber," J. Phys. D: Appl. Phys., Vol. 43, 225102-6, 2010.
    doi:10.1088/0022-3727/43/22/225102

    26. Tonouchi, M., "Cutting-edge terahertz technology," Nature Photonics, Vol. 1, 97-105, 2007.
    doi:10.1038/nphoton.2007.3

    27. Liu, X. L., T. Starr, A. F. Starr, and W. J. Padilla, "Infrared spatial and frequency selective metamaterial with near-unity absorber," Phys. Rev. Lett., Vol. 104, 207403, 2010.
    doi:10.1103/PhysRevLett.104.207403

    28. Padilla, W. J., M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, "Electrically resonant terahertz metamaterials: Theoretical and experimental investigations," Phys. Rev. B, Vol. 75, 041102(R), 2007.

    29. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
    doi:10.1126/science.1133628

    30. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
    doi:10.1103/PhysRevLett.100.207402

    31. Smith, D. R., J. Gollub, J. J. Mock, W. J. Padilla, and D. Schurig, "Calculation and measurement of bianisotropy in a split ring resonator," J. Appl. Phys., Vol. 100, 024507, 2006.
    doi:10.1063/1.2218033

    32. Li, M. H., H. L. Yang, and X. W. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
    doi:10.2528/PIER10071409

    33. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

    34. Zhu, B., Y. J. Feng, J. M Zhao, C. Huang, Z. B. Wang, and T. Jiang, "Polarization modulation by tunable electromagnetic metamaterial reflector/absorber," Optics Express, Vol. 18, 23196-23203, 2010.
    doi:10.1364/OE.18.023196

    35. Hu, C. G., X. Li, Q. Feng, X. N. Chen, and X. G. Luo, "Investigation on the role the dielectric loss in metamaterial absorber," Optics Express, Vol. 18, 6598-6603, 2010.
    doi:10.1364/OE.18.006598

    36. Hu, C., Z. Zhao, X. Chen, and X. Luo, "Realizing near-perfect absorption at visible frequencies," Optics Express, Vol. 17, 11039-11044, 2009.
    doi:10.1364/OE.17.011039

    37. Koschny, T., L. Zhang, and C. M. Soukoulis, "Isotropic three-dimensional left-handed metamaterials," Physical Review B, Vol. 71, 121103(R), 2005.

    38. Zhang, F. L., Q. Zhao, L. Kang, J. Zhou, and D. Lippens, "Experimental verification of isotropic and polarization properties of high permittivity-based metamaterial," Physical Review B, Vol. 80, 195119, 2009.
    doi:10.1103/PhysRevB.80.195119